
BrainVision Analyzer
Automation Reference Manual

Manual Version 003 as of Analyzer Software Version
2.0.2*

valid as of September 30, 2013*

* Valid until publication of a new version of the manual

Blank page

 |

Imprint

Any trademarks mentioned in this User Manual are the protected property of their rightful own-
ers.

All rights reserved, including the right to translate the document.

The content of the manual is the intellectual property of Brain Products GmbH. No part of the
manual may be reproduced or distributed in any form (by printing, photocopying or any other
method) without the express written permission of Brain Products GmbH.

Subject to change without notice.

© 2013 Brain Products GmbH

 | BrainVision Analyzer User Manual | Software Version 2.0.4 | September 30, 2013

Blank page

v

BrainV

Contents
List of figures ... ix

List of tables .. xi

About this manual .. 13

Structure and content of the new Automation Reference Manual ... 13

Who is the manual intended for? .. 13

Conventions used in the manual .. 13

Revision history ... 14

Reporting errors and support ... 14

Preface .. 15

Chapter 1 Underlying concepts ... 17

1.1 First steps and simple examples .. 17

1.2 Overview of the object hierarchy .. 20

1.3 Creating new data sets with "NewHistoryNode" .. 22

1.3.1 Specifying basic properties of data sets ... 22

1.3.2 Defining the contents of data sets .. 23

1.3.3 Creating data sets suitable for history templates .. 24

1.3.4 Efficient handling of data from the parent node .. 25

1.4 Processing arrays with "FastArray" ... 28

1.5 Dynamic parameterization ... 30

1.6 Alternatives to the integrated BASIC interpreter .. 31

Chapter 2 Object classes ... 33

2.1 Application ... 33

2.2 Channel .. 36

2.3 ChannelPosition .. 40

2.4 Channels ... 41

2.5 CurrentWorkspace ... 42

2.6 Dataset ... 44

2.7 DeletedHistoryNode .. 47
ision Analyzer Automation Reference Manual | Manual Version 003 | September 30, 2013

vi
2.8 DeletedHistoryNodes ... 48

2.9 Dongle .. 49

2.10 FastArray ... 50

2.11 HistoryExplorer .. 58

2.12 HistoryFile ... 59

2.13 HistoryFiles ... 62

2.14 HistoryNode .. 63

2.15 HistoryNodes .. 67

2.16 HistoryTemplateNode .. 68

2.17 Landmark .. 69

2.18 Landmarks .. 70

2.19 License ... 71

2.20 Licenses .. 72

2.21 Marker .. 73

2.22 Markers ... 75

2.23 NewHistoryNode ... 76

2.24 ProgressBar ... 83

2.25 Segment ... 86

2.26 Segments .. 87

2.27 Transformation .. 88

2.28 Window ... 89

2.29 Windows ... 92

2.30 Workspace .. 93

2.31 Workspaces .. 94

Chapter 3 Callable transforms ... 95

3.1 Band Rejection .. 96

3.2 Complex Demodulation ... 97

3.3 Formula Evaluator ... 98

3.4 IIR Filters ... 99

Chapter 4 Enumerator types .. 101

4.1 VisionDataType ... 101

 vii
4.2 VisionDataUnit .. 103

4.3 VisionSegType ... 104

4.4 VisionLayerIncFunction .. 105

Chapter 5 Error codes ... 107

Chapter 6 Analyzer Automation .NET .. 111

6.1 Overview ... 111

6.2 Subscribing to Automation events ... 113

6.3 Using "NewHistoryNode" ... 114

6.4 Additional extensions .. 116

Glossary .. 117

viii Blank page

ix

BrainV

List of figures
Chapter 1 Underlying concepts

1-1 Syntax assistance for the Application object 17

1-2 Don't just take it on trust: The debugger in action 18

1-3 Object hierarchy 20
ision Analyzer User Manual | Software Version 2.0.4 | September 30, 2013

x Blank page

xi

BrainV

List of tables
Chapter 3 Callable transforms

3-1 Parameters for Band Rejection 96

3-2 Parameters for Complex Demodulation 97

3-3 Parameters for Formula Evaluator 98

3-4 Parameters for IIR Filters 99

Chapter 4 Enumerator types

4-1 Values of the enumerator type "VisionDataType" 101

4-2 Values of the enumerator type "VisionDataUnit" 103

4-3 Values of the enumerator type "VisionSegType" 104

4-4 Values of the enumerator type "VisionLayerIncFunction" 105

Chapter 5 Error codes

5-1 Error codes 107
ision Analyzer Automation Reference Manual | Manual Version 003 | September 30, 2013

xii Blank page

13

Brai

About this manual
Structure and content of the new Automation Reference Manual

The new Analyzer Automation Reference Manual now includes an extensive theoretical chap-
ter that uses short examples to familiarize you with important basic concepts of Analyzer Au-
tomation and which are intended to facilitate your first steps in creating your own macros
and programs.

The Reference Manual has six chapters:

 Chapter 1 explains important fundamental concepts of Analyzer Automation and pro-
vides simple programming examples.

 Chapter 2 describes all the object classes of the Analyzer in detail.

 Chapter 3 describes the transforms which you can currently call using Analyzer Automa-
tion together with the parameters used.

 Chapter 4 describes the enumerator types used in Analyzer Automation.

 Chapter 5 contains a list of all error codes returned by Analyzer Automation methods.

 Chapter 6 provides an overview of Analyzer Automation for .NET.

Who is the manual intended for?

The Reference Manual is aimed at users from the fields of psychophysiological and neurolog-
ical research who have a knowledge of programming in BASIC or a comparable programming
language.

Conventions used in the manual

The manual uses the following typographical conventions:

monospaced A monospaced font is used to indicate text or characters to be en-
tered at the keyboard, such as source code and programming ex-
amples.

italic Italic text is used to identify menus, menu commands, dialog box-
es, options, and the names of files and folders.
nVision Analyzer Automation Reference Manual | Version 003 | September, 30 2013

14
underscore Underscored text indicates a cross-reference or a web address.

 The blue dot indicates the end of a chapter.

The manual also uses the following symbols to help you find your way around:

A cross-reference refers to a section of the manual or an external
document that has a bearing on the running text at this point.

The New symbol indicates that new material has been added at
this point.

Revision history

Page. Status Subject

Title page .new Remove of CE mark

Reporting errors and support

You can search for updates of this manual on our Web site using the following link: http://
www.brainproducts.com/downloads.php?kid=5&tab=2.

If you require support or if you discover a mistake in the manual, the software or during op-
eration, please contact:

Brain Products GmbH
Zeppelinstraße 7
D-82205 Gilching
Phone: +49 8105 73384 – 0
Fax: +49 8105 73384 – 505
Web site: http://www.brainproducts.com
Email: support@brainproducts.com



15

Brai

Preface
This Reference Manual describes how to address and control the BrainVision Analyzer appli-
cation from your own macros or programs. In order to achieve this, the Analyzer defines a hi-
erarchy of object classes that represent its components and contents, such as history nodes
or EEG views.

You can use the OLE Automation technology integrated in Windows® to access these object
classes and thus interact with the Analyzer. This provides a simple way of implementing a
broad spectrum of applications ranging from simple scripts up to complex calculations.

The SAX BASIC interpreter integrated in the Analyzer makes access to Analyzer Automation
extremely simple. We recommend that you first become familiar with simple automation ap-
plications in the interpreter.

Throughout this manual, we assume that you are familiar with the BASIC programming lan-
guage and are confident in using constructs such as method calls, loops and conditional
statements. All object definitions and programming examples are given in BASIC syntax. In
principle, however, Analyzer Automation can be addressed using other programming lan-
guages.

This Reference Manual refers to Version 2.0 of the Analyzer. The object classes in this version
of the Analyzer are extensions of the object classes in Analyzer 1.0, and existing macros or
scripts should continue to run without errors.



nVision Analyzer Automation Reference Manual | Manual Version 003 | September 30, 2013

17

Brai

Chapter 1 Underlying concepts
When you control the Analyzer using Analyzer Automation, you are working with object class-
es that represent the contents of the Analyzer application that is currently running. If you
have already worked with the Analyzer, you will be familiar with the majority of such content,
such as history files or markers.

In this chapter, we shall use simple examples to describe how to access the running Analyzer
application from the integrated SAX BASIC interpreter. In further sections, we shall provide
an overview of the object hierarchy in Analyzer Automation and explain some of the most im-
portant object classes in detail.

1.1 First steps and simple examples

The Analyzer application object Application has been predefined in the SAX BASIC inter-
preter and can be used directly. To do this, open the interpreter by choosing Macros > Macros
> New from the Analyzer ribbon. An editing window opens.

The interpreter provides all the usual functions of an integrated development environment
(IDE), including a debugger and syntax assistance. Controls for operating the interpreter are
located at the top of the editing window. You can, for example, run the macro by clicking the
Start/Resume button.

If you now type the text Application followed by a period in the Main method, the drop-
down list providing syntax assistance opens (see Figure 1-1). Starting with the Application
object, you can use the syntax assistance to easily build the calls needed for a simple macro.

Figure 1-1. Syntax assistance for the Application object
nVision Analyzer Automation Reference Manual | Version 003 | September, 30 2013

18 Chapter 1 Underlying concepts
This is a simple sample program:

Sub Main

HistoryFiles(1).Open

Dim Node As HistoryNode

Set Node = Application.HistoryFiles(1).HistoryNodes(1)

FileName = Node.Name

ChannelName = Node.Dataset.Channels(1).Name

Application.HistoryFiles(1).Close()

MsgBox("Node: " & FileName & " Channel: " & ChannelName)

End Sub

When you run the macro, the name of the raw data node of the first history file in the work-
space is displayed together with the name of the first EEG channel. In this context, it is im-
portant that the history file is opened using Open and closed using Close after use.

This process reflects the fact that when you are working with the Analyzer normally, you have
to open history files before you can use their contents. The access modalities in Analyzer Au-
tomation reflect those that apply when working normally with the Analyzer and are subject
to the same constraints.

The programming example below assumes that a further history node exists below the raw
data node of the first history file in the workspace. The macro renames this node as Hello
World:

Sub Main

HistoryFiles(1).Open

Dim Node As HistoryNode

Set Node = Application.HistoryFiles(1).HistoryNodes(1)

Node.HistoryNodes(1).Name = "Hello World"

Application.HistoryFiles(1).Close()

End Sub

If you click the gray bar in the editing window to set a breakpoint before you call the macro,
you can explicitly stop the program before Close is called. This allows you to check whether
the node has been renamed before the history tree is collapsed again (see Figure 1-2).

Overview of the object hierarchy 19
Figure 1-2. Don't just take it on trust: The debugger in action

In the Analyzer, it is not possible to make changes to existing history nodes and rename
channels, for example. You can only create new nodes with the required properties. There are
only a few exceptions to this rule, such as the ability to rename nodes. Accordingly, virtually
all the properties of objects that you can access using Application are read-only.

You can use Analyzer Automation to create new history nodes. This functionality is represent-
ed by separate object classes that are not accessed via the application object Applica-
tion.

1.2 Overview of the object hierarchy

Figure 1-3 shows the hierarchy of the object classes of Analyzer Automation. The chart does
not contain all the defined objects and is only intended as an overview. The individual
object classes are described in detail in Chapter 2 as of page 33.

20 Chapter 1 Underlying concepts
Figure 1-3. Object hierarchy

Creating new data sets with "NewHistoryNode" 21
The left-hand side of the chart shows objects that you can address directly or indirectly via
the Application object. These objects represent the current state of the Analyzer applica-
tion.

As a rule, the name of the subordinate object class corresponds to the name of the property
via which the corresponding object can be addressed. For example, the object Applica-
tion has a property CurrentWorkspace, that you can use to access an object of the class
CurrentWorkspace.

The right-hand side of the chart shows objects that are independent of the Application ob-
ject. These objects are used to create new content for the Analyzer. Thus, for example, you
can use the class NewHistoryNode to create a new history node.

Some object classes in Analyzer Automation are collections and act as containers for ob-
jects. Collection objects are highlighted in color in the chart. The class name of the objects
in the collection is shown in parentheses.

The objects in a collection can be indexed with a number. The first index is always 1 rather
than 0. Some collections also permit indexing via the name or title of the objects they con-
tain. This method of indexing is only sensible, however, when the name occurs just once in
the collection.

If arrays are used, it is assumed that the first index is 1.

Some of the object classes in Analyzer Automation have what is known as a "default ele-
ment". This is a method or property that can be addressed without naming it explicitly in the
code. For example, the default element of the Channel object is the DataPoint property.
Consequently the two calls below are equivalent:

fValue = Channels(1).DataPoint(1)

fValue = Channels(1)(1)

1.3 Creating new data sets with "NewHistoryNode"

You can use an object of the class NewHistoryNode to create either a new history file or a
new history node within an existing history file. You do this by first creating the NewHisto-
ryNode object and specifying its basic properties. You then write the data values to be con-
tained in the new data set to the NewHistoryNode object and optionally specify other
properties of the data set.

There are two ways of creating an object of the NewHistoryNode class. If you have included
the type library for Analyzer Automation, you can write the following:

Dim nhn as New NewHistoryNode

22 Chapter 1 Underlying concepts
The type library is automatically included in the integrated BASIC, and you can use this state-
ment. If you have not included the type library, you must instead write the following:

Set pb = CreateObject("VisionAnalyzer.NewHistoryNode")

1.3.1 Specifying basic properties of data sets

Some properties of a data set are of crucial importance and must be defined before data is
written to the data set. This includes the specification as to whether the data set is to form a
new history file or a new history node within an existing history file. The data type and the
length of the data set must also be defined.

The basic properties of the data set are defined by calling the methods Create, CreateEx
or CreateWithChannelMap. This call is issued immediately after the NewHistoryNode
object has been created. The specific application scenario will determine which of the meth-
ods you should use and what individual specifications you need to make.

The CreateEx method is an extension of the Create method that is used if the new data
set is to contain multiple frequency levels (e.g. wavelet data). In all other respects, it is iden-
tical to the Create method, which we shall describe in detail below.

Because the Create method has several different application scenarios, it is difficult to
identify which of the parameters must be specified in which cases simply on the basis of the
parameter list. The list of application scenarios below is intended to help you identify which
parameters you should use in order to create the required data set:

 If you wish to create a new history file, you must pass the file name you wish to assign to
the Create method. You must also specify the length and type of the data. The new his-
tory file will be listed in the Secondary tab in the history tree of the Analyzer. Example:

nhn.Create("Raw Data", Nothing, "New File Name", False,

viDtTimeDomain, 4, 1500, 4000)

The raw data node of a new history file with the name New File Name is created in the ex-
ample. The node contains four channels of time data with a sampling rate of 250 Hz.

 If you wish to create a new child node containing the same data as its parent node, you
must pass the parent node to the Create method. In this application scenario, you can,
for instance, modify markers and channel properties in the new node. It is not necessary
to make any further specifications regarding the length and type of the data. Example:

nhn.Create("New Child Node", ActiveNode, "", True)

A new child node of the node that is active in the Analyzer main window is created in the
example. The name of the child node is New Child Node and the value True of the argu-

Creating new data sets with "NewHistoryNode" 23
ment InheritData specifies that the data of the parent node is to be taken over un-
changed.

 If you wish to create a new child node and define the data of this node yourself, you must
pass the parent node to the Create method and also specify the length and type of the
data. Example:

nhn.Create("New Child Node", ActiveNode, "", False,

viDtTimeDomain, 4, 1500, 4000)

A new child node of the node that is active in the Analyzer main window is created in the
example. The name of the child node is New Child Node. It contains four channels of time
data with a sampling rate of 250 Hz.

 If you want to create a child node that both inherits the data of some of the channels of
its parent node and also modifies or rearranges channels, you must use the Create-
WithChannelMap method. This method is described in detail in Section 1.3.4 as of
page 26. Example:

Dim channels(1 To 3) As Long

channels(1)=5

channels(2)=0

channels(3)=1

nhn.CreateWithChannelMap("New Child Node", ActiveNode, channels)

A new child node of the node that is active in the Analyzer main window is created in the
example. The name of the child node is New Child Node. It contains channels 5 and 1 of
the parent node and a newly defined channel.

1.3.2 Defining the contents of data sets

After you have used Create, CreateEx or CreateWithChannelMap to define the basic
properties of the data set you wish to create, you can use the other properties and methods
of the NewHistoryNode object.

At this time, some of the contents of the data set such as any data inherited from the parent
node have already been defined. Default values are used for all other contents of the Ne-
wHistoryNode object. You can overwrite these as necessary to suit your requirements.

The example below shows how to define the contents of the NewHistoryNode object:

24 Chapter 1 Underlying concepts
Sub Main

' Creates the object and defines basic properties.

Set nhn = New NewHistoryNode

nhn.Create "BasicTest", ActiveNode, "", False, _

viDtTimeDomain, 32, 250, ActiveNode.Dataset.SamplingIn-

terval

' Defines channel properties. All other channel properties

' retain the properties inherited from the parent node as

' defaults.

nhn.SetChannelName 1, "Channel B"

nhn.SetChannelName 2, "Channel A"

nhn.SetChannelPosition 4, 1, 0, 90

' Sets an interval marker

nhn.AddMarker 0, 201, 20, "Bad Interval", "", False

' Specifies data: Reads 250 points from channel 3 of the parent

' node and writes them to channel 1. All other data points

' retain the default value 0.0.

Dim Data() As Single

ActiveNode.Dataset(3).GetData 1, 250, Data

nhn.WriteData 1, 1, 250, Data

' Writes a sample text for "Operation Infos"

nhn.Description = "Line1" & vbCrLf & "Line2"

' Concludes the operation and creates the node

nhn.Finish

End Sub

Creating new data sets with "NewHistoryNode" 25
As you can see from the example, the Finish method is used to complete creation of the
data set. The data set is only displayed in the Analyzer after Finish has been called. If the
data set should no longer be created, for instance as a result of user input, you should use
Cancel instead of the Finish method.

Note the following convention: If you use the integrated BASIC interpreter to create a data
set, execution of your macro always ends with the call to Finish. This means that any lines
that follow Finish will no longer be executed. You can, however, jump to these lines using
the GoTo command.

1.3.3 Creating data sets suitable for history templates

If you create a new data set with NewHistoryNode, you can use it in history templates pro-
vided that certain prerequisites are met:

 You must have created a child node within a history file using the NewHistoryNode ob-
ject, because history files as such cannot be used in history templates.

 The data set must have been created using the integrated BASIC interpreter.

 The new node must be created as a child node of the node that is active in the Analyzer
main window. To do this, use the predefined variable ActiveNode.

The macro below shows a simple example of a node that can be used in a template. It inherits
the data from its parent node and sets an additional marker at data point 200:

Sub Main

Set nhn = New NewHistoryNode

nhn.Create "Added Marker", ActiveNode

nhn.AddMarker 0, 201, 1, "Stimulus", "S1", False

nhn.Finish

End Sub

The example program in Section 1.3.2 on page 23 also creates a node that can be used in a
template. Note that in this example the data of the parent node is read using the variable Ac-
tiveNode. This approach ensures that the new node is only dependent on the parent node
and can be created unproblematically from within a history template.

When the new node is generated, the entire macro code is copied to the node. If you right-
click the node and choose Operation Infos... from the context menu, the macro code is
shown in addition to the Operation Infos.

26 Chapter 1 Underlying concepts
You can use the new node that has been created in this way as a regular transform in history
templates or drag it onto other nodes.

1.3.4 Efficient handling of data from the parent node

If you initialize a new history node using Create and take over the data from the parent
node without making any changes (InheritData = True argument), no copy is made of
the data in the new node. If, on the other hand, you write custom data to the node (Inher-
itData = False argument), all the data of the new node is saved in the history file. De-
pending on the application scenario, the quantity of data involved can be very large.

To prevent large quantities of data from being copied unnecessarily, you should check
whether the new node contains any unchanged channels from the parent node. If this is the
case, you can initialize the new node using CreateWithChannelMap. This method rep-
resents a compromise between the two application scenarios for Create described here.

You can use the CreateWithChannelMap method to implement the following operations
in the new node:

 Delete a channel of the parent node

 Add a new channel

 Change the sequence of the channels

The behavior of the CreateWithChannelMap method is determined by the ChannelMap
argument. This argument is an array of integer values. A new channel with data is created for
each item in the array. The value of each item specifies the data the channel is to contain:

 The value 0 means that the channel is to contain new data that you then have to write to
the new node in the macro using WriteData.

 A value greater than 0 means that the channel is to contain the data from the correspond-
ing channel in the parent node. Note that this data is not stored in the new node. It is in-
stead read directly from the parent node.

Any channels of the parent node that are not contained in the ChannelMap array are not in-
herited by the new node. You can rearrange channels from the parent node by changing the
sequence in which you insert them in the ChannelMap array.

When you use WriteData to write the data for new channels to the new node, the number
of channels to be written is equal to the number of times that you have used the value 0 in
the array ChannelMap. As far as WriteData is concerned, the new channels form a "re-
duced" data set made up of only those channels to which you have assigned the value 0 in
the ChannelMap.

Creating new data sets with "NewHistoryNode" 27
For example, if you have used the array (0, 1, 0, 2), you must write the data for two new chan-
nels. These channels have the numbers 1 and 2 when you use WriteData to write the indi-
vidual channels. In the new node, however, these channels appear at the first and third
positions in the channel list. Example:

Sub Main

Dim a(1 to 4) as Long

Channels(1)=0

Channels(2)=1

Channels(3)=0

Channels(4)=2

Set hn = ActiveNode

Set nhn = New NewHistoryNode

nhn.CreateWithChannelMap "BasicTest", ActiveNode, Channels

' Constant value of 50 for channel 1

Dim Data(1 To 10000) As Single

For i = 1 To 10000

Data(i) = 50

Next i

' Note: Index is 1 because this is the first 0 in ChannelMap

nhn.WriteData 1, 1, 10000, Data

' Constant value of 100 for channel 3

For i = 1 To 10000

Data(i) = 100

Next i

' Note: Index is 2 because this is the second 0 in ChannelMap

nhn.WriteData 2, 1, 10000, Data

28 Chapter 1 Underlying concepts
' Channel properties are inherited from the parent node,

' new channels are assigned default values

nhn.SetChannelName 1, "New Channel 1"

nhn.SetChannelName 3, "New Channel 2"

nhn.SetChannelName 4, "Renamed Channel"

nhn.Finish

End Sub

1.4 Processing arrays with "FastArray"

If you are using the integrated BASIC interpreter, you can use the auxiliary class FastArray
to access arrays efficiently. This class provides a number of simple arithmetic operations
(addition, multiplication, etc.) that allow you to manipulate the elements of the array. The
calculations are then performed significantly faster than if you had implemented the opera-
tions directly in the BASIC interpreter.

As a rule, the arithmetic operations use a source array (SourceData parameter) and a target
array (TargetData parameter). The target array is at the same time the left-hand operand.
In operations with only one operand, the target array is simultaneously the source array. The
source array remains unchanged in operations with two operands.

All indices used in the operations refer to the start of an array. This means that an array de-
clared with

Dim Data(12 to 24) As Single

has its first item at Data(12). An index parameter of 1 refers to this entry. To avoid confu-
sion, we therefore recommend that you declare an array as

Dim Data(1 to …) As Single

All arrays that are used in the operations must be one-dimensional and must already have a
defined field length.

The methods of the FastArray class use parameters with the same names. The parameters
StartIndex, Step and Count are used to describe a subset of the elements in an array.
Depending on how they are used, these parameters are prefixed with Source or Target (for
the source or target array respectively). The resulting subset is determined as follows:

Processing arrays with "FastArray" 29
StartIndex determines the first item of the subset. The next item is offset by Step and
each subsequent one also. Count is the maximum number of items. If the array is too small
to accommodate Count elements described in this fashion, the quantity of data is limited
by the end of the array. If Count is set to -1, the subset is only limited by the end of the array.

Examples (StartIndex, Step, Count):

 1, 1, -1: Entire array (default setting)

 1, 2, -1: All odd-numbered elements of an array

 200, -1, -1: All elements as of position 200 in reverse order

 7, 32, -1: The 7th, 39th, 71st item

If, for example, you have requested multiplexed data using Dataset.GetData(), and the
number of channels is 32, then 7, 32, -1 corresponds to the data of the seventh channel.

Channels in arrays can only be defined in this manner if the data is not complex and only has
one frequency level. You can use the following method to define subsets that describe chan-
nels whose data points are, for instance, complex (two values per data point):

RepeatNextOperation(Count As Long, [TargetIndexIncrement As Long],

[SourceIndexIncrement As Long])

This method instructs the subsequent method to repeat Count times. For every repetition,
the default indices are incremented by TargetIndexIncrement and SourceIndexIn-
crement.

For example, if you have complex data with 32 channels, the seventh channel can be copied
to a separate array as follows:

Dim fa As New FastArray

Dim ChannelData() As Single

...

SourceData = ds.GetData(...)

fa.RepeatNextCommand(-1,,64)

ChannelData = fa.GetSelectedElements(SourceData,13,,2)

The first data point of the seventh channel starts at position 13. This is the start index. Two
points are copied. Following this, the start index of the source field is increased by 64 and
the operation is repeated up to the limits of the array.

30 Chapter 1 Underlying concepts
1.5 Dynamic parameterization

You can create new history nodes by calling primary transforms available in the Analyzer in
Analyzer Automation. To do this, the Transformation.Do method is used to pass param-
eters to the transform in the form of a string (see the description of the method on
page 84). This functionality is currently only available for a selection of transforms. A list
of supported transforms and their parameters is given in Chapter 3 as of page 91.

The advantage of this approach compared with calling a transform via the Transformations
tab (see the Application.ExecuteMenuItem method on page 33) is that it enables
dynamic parameterization. In other words, the parameters for the transform can be deter-
mined at runtime. This means, for example, that results of previously completed operations
can be taken into account.

If you create a new history node with Transformation.Do, you can use this node in his-
tory templates provided that certain prerequisites are met:

 The history node must have been created using the integrated BASIC interpreter.

 The new node must be created as a child node of the node that is active in the Analyzer
main window. To do this, use the predefined variable ActiveNode.

Note the following convention: If you use the integrated BASIC interpreter to create a new
data set, execution of your macro always ends with the call to Do. This means that any lines
that follow Do will no longer be executed. You can, however, jump to these lines using the
GoTo command.

When the new node is generated, the entire macro code is copied to the node. If you right-
click the node and choose Operation Infos... from the context menu, the macro code is
shown in addition to the Operation Infos.

You can use the new node that has been created in this way as a regular transform in history
templates or drag it onto other nodes.

Example program that performs a filter operation:

Sub Main

Transformation.Do "Filters", "HighCutoff=30,48;Notch=50", Ac-

tiveNode, "FilterTest"

End Sub

Alternatives to the integrated BASIC interpreter 31
1.6 Alternatives to the integrated BASIC interpreter

The integrated BASIC interpreter allows you to create your own macros without the need to
install a separate development environment in addition to the Analyzer. You can, however,
also address Analyzer Automation from an external development environment using the OLE
Automation technology integrated in Windows®. This allows you, for instance, to use a pro-
gramming language other than BASIC.

If you wish to use Analyzer Automation, it is an advantage if the development environment is
able to include type libraries for OLE Automation. This is the case with Microsoft Visual Stu-
dio, for instance. The terms used vary somewhat between development environments, which
means that the functionality you need may go under the name of Add COM reference or In-
clude ActiveX library.

If you include a type library in a development environment, a list of the type libraries avail-
able on the system will usually be displayed. The type library used by Analyzer Automation
appears in the list as Vision Analyzer 1.0 Type Library.

If you do not wish to include the type library for Analyzer Automation in your development
environment, you may be able to use appropriate constructs provided by your programming
language to directly access the OLE Automation objects. Example in BASIC syntax:

Set analyzer = CreateObject("VisionAnalyzer.Application")

analyzer.HistoryFiles("odd_phob_2").Open()

When you access Analyzer Automation from an external program, data that is requested from
Analyzer Automation by the program is copied to the memory of the external program. This
causes a certain loss of processing speed. On the other hand, it is possible that the external
program can perform its own calculations significantly faster than the integrated BASIC inter-
preter.

The object definitions and programming examples given in this manual use BASIC syntax. If
you are using a different programming language, the syntax of this language will provide sim-
ilar constructs (e.g. NULL or NIL in place of Nothing) and you can translate the objects ac-
cordingly using a uniform pattern.



32 Chapter 1 Underlying concepts

33

Brai

Chapter 2 Object classes
2.1 Application

2.1.1 Description

The Application class contains only one object, which represents the entire program.
This is the default object. The methods and properties of this object can be addressed direct-
ly in SAX BASIC. Thus, for example, Visible corresponds to Application.Visible.

2.1.2 Methods

AskPrompts the user for the response Yes or No. This function should always be used in place of
the integrated MsgBox function if this line of code could potentially be executed inside a his-
tory template.
If the BASIC script is run inside a history template, and messages are only output as a log,
execution is not interrupted by Ask, and the response is always taken to be Yes. You can use
this setting when you run the history template using the function Apply to History File(s).

DefinitionFunction Ask(Text as String) as Long

ParametersText Text of the prompt displayed

Return valueReturns vbYes (numeric 6) or vbNo (numeric 7) depending on the response

ExecuteMenuItemExecutes an item in the ribbon. This is entered as text. The parameter is not case-sensitive,
and spaces/full stops in the menu text are ignored. \ is used to distinguish between the var-
ious levels in the ribbon. For reasons of compatibility, it is still possible to address the names
of the menu items used in Analyzer Version 1.0.
Note that some menu items can only be used when certain prerequisites have been met. For
instance, a data set must be active in the Analyzer main window before a transform can be
applied to it.

DefinitionSub ExecuteMenuItem(MenuItem as String)

ParametersMenuItem Name of the item

ExampleThe IIR Filters transform can be executed using either
ExecuteMenuItem "Transformations\Artifact Rejection/Reduction\Data

Filtering\IIR Filters" or
ExecuteMenuItem "Transformations\Filters".

MessagePrompts the user for the response OK or Cancel. This function should always be used in place
of the integrated MsgBox function if this line of code could potentially be executed inside a
history template.
nVision Analyzer Automation Reference Manual | Version 003 | September, 30 2013

34 Chapter 2 Object classes
If the BASIC script is run inside a history template, and messages are only output as a log,
execution is not interrupted by Message, and the response is always taken to be OK. You
can use this setting when you run the history template using the function Apply to History
File(s).

Definition Function Message(Text as String) as Long

Parameters Text Text of the message displayed

Return value Returns vbOk (numeric 1) or vbCancel (numeric 2) depending on the response

MessageStatus Outputs a text in the status bar.

Definition Sub MessageStatus(Text as String)

Parameters Text Text displayed in the status bar

Msg Outputs a text to a message box. The user can only respond with OK. This function should
always be used in place of the integrated MsgBox function if this line of code could poten-
tially be executed inside a history template.
If the BASIC script is run inside a history template, and messages are only output as a log,
execution is not interrupted by Msg, and the response is always taken to be OK. You can use
this setting when you run the history template using the function Apply to History File(s).

Definition Function Msg(Text as String) as Long

Parameters Text Text of the message displayed

Return value Always returns vbOk (numeric 1)

Quit Terminates the program.

Definition Sub Quit()

2.1.3 Properties

ActiveTemplateNode Write-protected
This object describes the template node that is currently being executed if the Analyzer is ex-
ecuting a history template. If not, the value is Nothing.

Definition ActiveTemplateNode As HistoryTemplateNode

ActiveWindow Write-protected
The active tab in the Analyzer main window. This value is Nothing if no tab is open.

Definition ActiveWindow As Window

CurrentWorkspace Write-protected

Application 35
The currently open workspace.
DefinitionCurrentWorkspace As CurrentWorkspace

DongleWrite-protected
The dongle currently in use.

DefinitionDongle as Dongle

HistoryExplorerWrite-protected
The History Explorer.

DefinitionHistoryExplorer As HistoryExplorer

HistoryFilesWrite-protected
Collection containing all the history files in the currently open workspace.

DefinitionHistoryFiles As HistoryFiles

InstalledComponentsWrite-protected
List of installed program components as text.

DefinitionInstalledComponents as String

SublicensesWrite-protected
Collection containing the currently available licenses for optional program components of
the Analyzer.

DefinitionSublicenses as Licenses

TempFileFolderWrite-protected
Folder for temporary files.

DefinitionTempFileFolder as String

TemplateModeIf the value of this flag is True (-1), the Analyzer is currently executing a history template.

DefinitionTemplateMode As Boolean

VersionWrite-protected
Specifies the current program version.

DefinitionVersion As Double

VisibleThis flag specifies whether the Analyzer main window is visible (True or -1) or not (False
or 0).

DefinitionVisible As Boolean

36 Chapter 2 Object classes
Windows Write-protected
Collection containing all the tabs in the Analyzer main window.

Definition Windows As Windows

WorkFileFolder Write-protected
Folder for the work files (workspace files, macros and history templates).

Definition WorkFileFolder As String

Workspaces Write-protected
Collection containing all the workspaces in the Workfiles folder.

Definition Workspaces As Workspaces

2.2 Channel

2.2.1 Description

The Channel object describes a channel in a history node. Since DataPoint is the default
element, it is easy to access an individual data point.

2.2.2 Example

Dim fValue As Single

Dim hn As HistoryNode

Dim hf As HistoryFile

Dim ch As Channel

' First history file

Set hf = HistoryFiles(1)

hf.Open

' First data set

Set hn = hf(1)

' First channel

Set ch = hn.Dataset(1)

Channel 37
' First data point

f Value = ch(1)

' Alternative access using the channel name

Set ch = hn.Dataset("FP1")

' First data point

f Value = ch(1)

hf.Close

Alternative short version:

Dim fValue As Single

HistoryFiles(1).Open

fValue = HistoryFiles(1)(1).Dataset(1)(1)

HistoryFiles(1).Close

You can read large quantities of data significantly faster if you read in a vector using the
Channel.GetData() method. If you wish to read data from multiple channels, you should
use the Dataset.GetData()method. For detailed information, refer to Section 2.6 as
of page 43.

2.2.3 Methods

GetDataReads a number of data points into an existing vector.
If the data set contains complex data, each data point has two values: The first value is the
real part of the number and the second value is the imaginary part. This means, for instance,
that Data(1) is the real part of the first data point and Data(2) is the imaginary part. The
second data point is thus assigned to Data(3) and Data(4), etc.

DefinitionSub GetData(Position As Long, Points As Long, Data() As Single)

ParametersPosition Position of the data points to be read in the data set (1 – …)

Points Number of data points to be read

Data Vector that receives the data points that have been read

ExampleDim channel As Channel

Dim node as HistoryNode

Dim fVector() As Single

HistoryFiles(1).Open

38 Chapter 2 Object classes
' Raw data node of the first history file

Set node = HistoryFiles(1)(1)

' First channel in the node

Set channel = node.Dataset(1)

channel.GetData(1, 1000, fVector)

HistoryFiles(1).Close

PropertyName Returns the name of a channel property.
This function can be used to list all channel properties including user-defined channel prop-
erties.

Definition Function PropertyName (Number As Long) As String

Parameters Number Number of the channel property (1 – …)

Return value Name of the channel property with the number specified or an empty string if this property
does not exist

Example This example lists the names of all channel properties including any user-defined channel
properties that may be present.
Dim channel As Channel

HistoryFiles(1).Open

Set channel = HistoryFiles(1)(1).Dataset(1)

s = ""

For i = 1 To channel.PropertyCount

s = s & channel.PropertyName(i) & vbCrLf

Next i

' Output to message window

Application.Msg(x)

HistoryFiles(1).Close

PropertyValue Returns the value of a channel property.

Definition Function PropertyValue(Name As String) As Variant

Parameters Name Name of the channel property to be read

Return value Returns the value of the specified channel property or Nothing if the property does not exist

Channel 39
2.2.4 Properties

DataPointDefault element, write-protected
Reads the value of a data point. If the data set involves complex data, this variable specifies
the real part of the complex number.

DefinitionDataPoint(Index As Long) As Single

ParametersIndex Specifies the position in the data set (1 – ...)

DataPointLayeredWrite-protected
Reads the value of a data point in a data set comprising multiple frequency levels ("layers"),
such as a data set comprising continuous wavelets. If the data set involves complex data,
this variable specifies the real part of the complex number. This property corresponds to
DataPoint.

DefinitionDataPointLayered(Index As Long, Layer As Long) As Single

ParametersIndex Specifies the position in the data set (1 – ...)

Layer Specifies the frequency level

ImgPointWrite-protected
Reads the value of the imaginary part of a data point if the data set contains complex data.

DefinitionImgPoint(Index As Long) As Single

ParametersIndex Specifies the position in the data set (1 – ...)

ImgPointLayeredWrite-protected
Reads the value of the imaginary part of a data point in a data set comprising multiple fre-
quency levels ("layers"), such as a data set comprising continuous wavelets. This property
corresponds to ImgPoint.

DefinitionImgPointLayered(Index As Long, Layer As Long) As Single

ParametersIndex Specifies the position in the data set (1 – ...)

Layer Specifies the frequency level

NameWrite-protected
Name of channel.

DefinitionName As String

PositionWrite-protected
Position of the channel on the surface of the head.

DefinitionPosition As ChannelPosition

40 Chapter 2 Object classes
PropertyCount Write-protected
Number of property values of the channel. This number includes all channel properties in-
cluding any user-defined channel properties.

Definition PropertyCount As Long

ReferenceChannel Write-protected
Name of reference channel.

Definition ReferenceChannel As String

SecondPosition Write-protected
The second position is used when an additional position on the surface of the head is as-
signed to a channel in addition to its own coordinates (for instance with the Coherence trans-
form).

Definition SecondPosition As ChannelPosition

Unit Write-protected
Unit for the data on this channel, such as μV, μV2, etc. (see also Section 4.2 as of
page 98).

Definition Unit As VisionDataUnit

UnitString Write-protected
The unit for the channel as a text string. This specification is used if the unit is not one of the
predefined units. In this event, the convention is to use the value viDuUnitless for the
Unit property.

Definition UnitString As String

2.3 ChannelPosition

2.3.1 Description

The ChannelPosition object describes the position of a channel.

2.3.2 Properties

Phi Write-protected
Phi in degrees.

Channels 41
DefinitionPhi As Single

RadiusWrite-protected
Radius in millimeters. A value of 0 indicates an invalid position specification. The value of 1
assumes the head to be a perfect sphere with a uniform radius.

DefinitionRadius As Single

ThetaWrite-protected
Theta in degrees.

DefinitionTheta As Single

2.4 Channels

2.4.1 Description

The Channels object is a collection of Channel objects.

2.4.2 Properties

CountWrite-protected
Number of channels in the collection.

DefinitionCount As Long

ItemDefault element, write-protected
Returns a Channel object from the collection. You can use either the channel number or the
channel name to specify the channel.

DefinitionItem(NameOrIndex As Variant) As Channel

ParametersNameOrIndex Specifies the channel number (1 – ...) or the channel name

42 Chapter 2 Object classes
2.5 CurrentWorkspace

2.5.1 Description

The CurrentWorkspace object represents the currently open workspace.

2.5.2 Methods

Load Loads the specified workspace file FileName.

Definition Sub Load(FileName As String, [SingleHistoryFile As String])

Parameters FileName Name of the workspace file or fully-qualified path of the workspace file if it is not

located in the Workfiles folder

SingleHistoryFile (optional) Allows you to load a single history file

Save Saves the currently open workspace file.

Definition Sub Save()

SaveAs Saves the currently open workspace file under a new name.

Definition Sub SaveAs(FileName As String)

Parameters FileName Specifies the name of the workspace file

2.5.3 Properties

ExportFileFolder Write-protected
Default folder for exported files.

Definition ExportFileFolder As String

FullName Write-protected
Name of the workspace file including fully-qualified path.

Definition FullName As String

HistoryFileFolder Write-protected
Folder for history files.

Definition HistoryFileFolder As String

Dataset 43
NameWrite-protected
Base name of the workspace file without folder and file name extension.

DefinitionName As String

RawFileFolderWrite-protected
Folder for raw data.

DefinitionRawFileFolder As String

2.6 Dataset

2.6.1 Description

The Dataset object represents a data set. This data set is either the entire data of a history
node or the data of an individual segment within a node.

Properties prefixed with Layer are only used with data containing multiple frequency levels
(layers) such as continuous wavelets.

2.6.2 Methods

GetDataReads a number of data points and returns them as a vector.
If the ChannelList parameter is not used, the data of all channels is returned.
The data is returned in multiplexed format. This means that all the data of the first sampling
point is returned first, followed by that of the second sampling point and so on. This format
corresponds to the internal data management format in the history nodes. This results in a
significantly higher processing speed compared with Channel.GetData().
If the data set contains complex data, each data point has two values: The first value is the
real part of the number and the second value is the imaginary part. This means, for instance,
that Data(1) is the real part of the first data point and Data(2) is the imaginary part.

DefinitionFunction GetData(Position As Long, Points As Long,

[ChannelList as Variant]) as Single()

ParametersPosition Position of the data points to be read in the data set (1 – …)

Points Number of data points to be read

ChannelList (optional) Contains either an array of channels or a single channel. Channels

can be specified by their number (1 – …) or their name.

Return valueVector containing the data

44 Chapter 2 Object classes
Example Each of the following examples reads the first 2000 data points from the raw data set of the
first history file. The first GetData call reads all the channels. The remaining calls show how
individual or multiple channels can be addressed.
Dim ds As Dataset

HistoryFiles(1).Open

Set ds = HistoryFiles(1)(1).Dataset

Dim Data() as Single

Data = ds.GetData(1, 2000)

Data = ds.GetData(1, 2000, Array("FP1", "Fp2"))

Data = ds.GetData(1, 2000, Array(1, 12))

Data = ds.GetData(1, 2000, "F3")

Dim a(1 to 2) as Long

a(1) = 1

a(2) = 12

Data = ds.GetData(1, 2000, a)

PropertyName Returns the name of a property.
This function can be used to list all properties including user-defined properties.

Definition Function PropertyName (Number As Long) As String

Parameters Number Number of the property (1 – …)

Return value Name of the property with the number specified or an empty string if this property does not
exist

PropertyValue Returns the value of the specified property.

Definition Function PropertyValue(Name As String) As Variant

Parameters Name Name of the property to be read

Return value Value of the specified property or Nothing if the property does not exist

2.6.3 Properties

Averaged Write-protected
This flag specifies whether the data set has been produced directly or indirectly from an av-
eraging operation (True or -1) or has not been averaged (False or 0).

Dataset 45
DefinitionAveraged As Boolean

AverageCountWrite-protected
Number of segments included in averaging. Only valid if the value of the Averaged flag is
True (-1).

DefinitionAverageCount As Long

ChannelsDefault element, write-protected
Collection of channel objects in the data set. You can use the channel objects to read prop-
erties of a channel or to query data of this channel.

DefinitionChannels As Channels

LayerFunctionWrite-protected
Increment function between the frequency levels (layers) of a data set. Frequency levels of
this type occur with continuous wavelets, for instance. You will find the possible values
of this property in Chapter 4 as of page 97.

DefinitionLayerFunction As VisionLayerIncFunction

LayerLowerLimitWrite-protected
The value of the lowest frequency level (layer) of a data set with multiple frequency levels.

DefinitionLayerLowerLimit As Double

LayersWrite-protected
Number of frequency levels (layers) in the data set.

DefinitionLayers As Long

LayerUpperLimitWrite-protected
The value of the highest frequency level (layer) of a data set with multiple frequency levels.

DefinitionLayerUpperLimit As Double

LengthWrite-protected
Length of the data set in data points.

DefinitionLength As Long

MarkersWrite-protected
Collection of markers in the data set.

DefinitionMarkers As Markers

PropertyCountWrite-protected

46 Chapter 2 Object classes
Number of property values of the data set. This number includes all properties including any
user-defined properties.

Definition PropertyCount As Long

SamplingInterval Write-protected
Sampling interval of the data set. Specified in microseconds for data in the time domain and
in hertz for data in the frequency domain.
The following formula converts the sampling interval for data in the time domain to the sam-
pling rate: Frequency = 1000000.0 / SamplingInterval

Definition SamplingInterval As Double

SegmentationType Write-protected
Specifies the segmentation type of the data set (see also Section 4.3 on page 99).

Definition SegmentationType as VisionSegType

Type Write-protected
Type of the data in the data set (see also Section 4.1 on page 97).

Definition Type As VisionDataType

2.7 DeletedHistoryNode

2.7.1 Description

The DeletedHistoryNode object represents a deleted history node. This node is stored
for a time in its former parent node and can be restored if needed.

2.7.2 Methods

Undelete Restores a deleted node together with its child nodes.

Definition Sub Undelete()

DeletedHistoryNodes 47
2.7.3 Properties

NameWrite-protected
Name of the deleted node.

DefinitionName as String

2.8 DeletedHistoryNodes

2.8.1 Description

The DeletedHistoryNodes object lists the deleted child nodes of a HistoryNode.

2.8.2 Properties

CountWrite-protected
Number of deleted nodes in the collection.

DefinitionCount As Long

ItemDefault element, write-protected
Returns a DeletedHistoryNode object from the collection. You can use the position of
the node in the collection or its name to specify the deleted node.

DefinitionItem(NameOrIndex As Variant) As DeletedHistoryNode

ParametersNameOrIndex Specifies the position of the node in the collection (1 – ...) or its name

2.9 Dongle

2.9.1 Description

The Dongle object describes the dongle currently in use.

48 Chapter 2 Object classes
2.9.2 Properties

NetworkDongle Write-protected
This flag is set if the Analyzer is being used with a network dongle.

Definition NetworkDongle As Boolean

InternalSerialNumber Write-protected
Specifies the internal serial number of the dongle.

Definition InternalSerialNumber As Long

2.10 FastArray

2.10.1 Description

The FastArray object is an auxiliary class for accelerating access to arrays. It only makes
sense to use this class in the integrated BASIC interpreter. For further information on how
to use the FastArray object, refer to Section 1.4 as of page 28.

2.10.2 Example

You have to create an object of the type FastArray in order to be able to use its methods.
You can use the following line of code in the integrated BASIC interpreter:

Dim Fa as New FastArray

You can then use the object in order to perform calculations:

Data = node.Dataset.GetData(1,2000)

Fa.AddValue(Data, 5.0)

2.10.3 Methods

AddArray Adds a subset of SourceData to a subset of TargetData.
The operation is limited by the smaller subset of the two arrays.

Definition Sub AddArray(TargetData() As Single, SourceData() As Single,

FastArray 49
[TargetStartIndex As Long = 1], [TargetStep As Long = 1],

[SourceStartIndex As Long = 1], [SourceStep As Long = 1],

[Count As Long = -1])

ParametersTargetData Array containing output data

SourceData Array containing input data

TargetStartIndex Position (1 – ...) of the first item to be processed in the array containing

output data

TargetStep Offset between two items to be processed in the array containing output data

SourceStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing input data

SourceStep (optional) Offset between two items to be processed in the array containing in-

put data

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

AddValueAdds the fixed value Value to a subset of TargetData.
Value is incremented by ValueIncrement after each operation.

DefinitionSub AddValue(TargetData() As Single, Value As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1], [ValueIncrement As Single = 0])

ParametersTargetData Array containing output data

Value Value to be added

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

ValueIncrement (optional) The value of Value is incremented by this value after each ad-

dition operation.

Atan2ArrayCalculates the arc tangent of a subset of TargetData and SourceData:
TargetData = Atan2(TargetData/SourceData)
The result is stored in TargetData in radian values (range +/- μ).

DefinitionSub Atan2Array(TargetData() As Single, SourceData() As Single,

[TargetStartIndex As Long = 1], [TargetStep As Long = 1],

[SourceStartIndex As Long = 1], [SourceStep As Long = 1],

[Count As Long = -1])

ParametersTargetData Array containing output data

50 Chapter 2 Object classes
SourceData Array containing input data

TargetStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing output data

TargetStep (optional) Offset between two items to be processed in the array containing out-

put data

SourceStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing input data

SourceStep (optional) Offset between two items to be processed in the array containing in-

put data

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

CopyArray Copies a subset of SourceData into a subset of TargetData.
The operation is limited by the smaller subset of the two arrays.

Definition Sub CopyArray(TargetData() As Single, SourceData() As Single, [Tar-

getStartIndex As Long = 1], [TargetStep As Long = 1], [Source-

StartIndex As Long = 1], [SourceStep As Long = 1],

[Count As Long = -1])

Parameters TargetData Array containing output data

SourceData Array containing input data

TargetStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing output data

TargetStep (optional) Offset between two items to be processed in the array containing out-

put data

SourceStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing input data

SourceStep (optional) Offset between two items to be processed in the array containing in-

put data

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

CopyValue Copies the fixed value Value into a subset of TargetData.
Value is incremented by ValueIncrement after each operation.

Definition Sub CopyValue(TargetData() As Single, Value As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1], [ValueIncrement As Single = 0])

Parameters TargetData Array containing output data

Value Value to be added

FastArray 51
StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

ValueIncrement (optional) The value of Value is incremented by this value after each as-

signment.

DivideArrayDivides a subset of TargetData by a subset of SourceData:
TargetData = TargetData / SourceData

The operation is limited by the smaller subset of the two arrays.
DefinitionSub DivideArray(TargetData() As Single, SourceData() As Single,

[TargetStartIndex As Long = 1], [TargetStep As Long = 1],

[SourceStartIndex As Long = 1], [SourceStep As Long = 1],

[Count As Long = -1])

ParametersTargetData Array containing output data

SourceData Array containing input data

TargetStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing output data

TargetStep (optional) Offset between two items to be processed in the array containing out-

put data

SourceStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing input data

SourceStep (optional) Offset between two items to be processed in the array containing in-

put data

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

DivideValueDivides a subset of TargetData by the fixed value Value:
TargetData = TargetData / Value

Value is incremented by ValueIncrement after each operation.
DefinitionSub DivideValue(TargetData() As Single, Value As Single, [StartIn-

dex As Long = 1], [Step As Long = 1],

[Count As Long = -1], [ValueIncrement As Single = 0])

ParametersTargetData Array containing output data

Value Value to be added

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

52 Chapter 2 Object classes
Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

ValueIncrement (optional) The value of Value is incremented by this value after each di-

vision operation.

GetMaximumValue Returns the largest value of a subset of SourceData.

Definition Function GetMaximumValue(SourceData() As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1]) As Single

Parameters SourceData Array containing input data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

Return value The largest value of the subset

GetMeanValue Returns the mean value of a subset of SourceData.

Definition Function GetMeanValue(SourceData() As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1]) As Single

Parameters SourceData Array containing input data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

Return value The mean value of the subset

GetMinimumValue Returns the smallest value of a subset of SourceData.

Definition Function GetMinimumValue(SourceData() As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1]) As Single

Parameters SourceData Array containing input data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

FastArray 53
Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

Return valueThe smallest value of the subset

GetSelectedElementsReturns a subset of SourceData.

DefinitionFunction GetSelectedElements(SourceData() As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1]) As Single()

ParametersSourceData Array containing input data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

Return valueArray containing the subset

MultiplyArrayMultiplies a subset of TargetData by a subset of SourceData:
TargetData = TargetData * SourceData

The operation is limited by the smaller subset of the two arrays.
DefinitionSub MultiplyArray(TargetData() As Single, SourceData() As Single,

[TargetStartIndex As Long = 1], [TargetStep As Long = 1],

[SourceStartIndex As Long = 1], [SourceStep As Long = 1],

[Count As Long = -1])

ParametersTargetData Array containing output data

SourceData Array containing input data

TargetStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing output data

TargetStep (optional) Offset between two items to be processed in the array containing out-

put data

SourceStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing input data

SourceStep (optional) Offset between two items to be processed in the array containing in-

put data

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

MultiplyValueMultiplies the fixed value Value by a subset of TargetData:

54 Chapter 2 Object classes
TargetData = TargetData * Value

Value is incremented by ValueIncrement after each operation.
Definition Sub MultiplyValue(TargetData() As Single, Value As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1], [ValueIncrement As Single = 0])

Parameters TargetData Array containing output data

Value Value to be added

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

ValueIncrement (optional) The value of Value is incremented by this value after each di-

vision operation.

RectifyArray Converts all elements of a selected subset into their absolute value (rectification). Target-
Data is both the source and the target.

Definition Sub RectifyArray(TargetData() As Single, [StartIndex As Long = 1],

[Step As Long = 1], [Count As Long = -1])

Parameters TargetData Array containing output data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

RepeatNextOperation Repeats the next method call in the FastArray class the number of times specified by
Count and increments the method parameter SourceIndex or TargetIndex on each
call. This allows complex operations on subsets of the array to be formulated simply.
Irrespective of the parameters used, every operation is limited by the end of the array. If the
next operation does not have these parameters, the relevant parameter is ignored by Re-
peatNextOperation.
The TargetIndexIncrement and SourceIndexIncrement parameters must not con-
tain negative values. The Step parameter of the subsequent operation is also not permitted
to be negative.

Definition Sub RepeatNextOperation([Count As Long = -1],

[TargetIndexIncrement As Long = 1],

[SourceIndexIncrement As Long = 1])

Parameters Count Specifies the number of times the operation is repeated

FastArray 55
TargetIndexIncrement Specifies the value by which the TargetIndex parameter of the

method call is incremented on each repetition

SourceIndexIncrement Specifies the value by which the SourceIndex parameter of the

method call is incremented on each repetition

RootArrayCalculates the square roots of all elements of a selected subset based on their absolute val-
ue. This means negative values are also allowed to be present in the output data set. Tar-
getData is both the source and the target.

DefinitionSub RootArray(TargetData() As Single, [StartIndex As Long = 1],

[Step As Long = 1], [Count As Long = -1])

ParametersTargetData Array containing output data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

RotateLeftArrayRotates all elements of a selected subset to the left. The first element gets the value of the
second, the second the value of the third, and so on. The value that was originally first be-
comes the last value.

DefinitionSub RotateLeftArray(TargetData() As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1])

ParametersTargetData Array containing output data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

RotateRightArrayRotates all elements of a selected subset to the right. The second element gets the value of
the first, the third the value of the second, and so on. The value that was originally last be-
comes the first value.

DefinitionSub RotateRightArray(TargetData() As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1])

ParametersTargetData Array containing output data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

56 Chapter 2 Object classes
Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

SortArray Sorts all elements of a selected subset in ascending order. TargetData is both the source
and the target.

Definition Sub SortArray(TargetData() As Single, [StartIndex As Long = 1],

[Step As Long = 1], [Count As Long = -1])

Parameters TargetData Array containing output data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

SquareArray Squares all elements of a selected subset. TargetData is both the source and the target.

Definition Sub SquareArray(TargetData() As Single, [StartIndex As Long = 1],

[Step As Long = 1], [Count As Long = -1])

Parameters TargetData Array containing output data

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

SubtractArray Subtracts a subset of SourceData from a subset of TargetData:
TargetData = TargetData - SourceData

The operation is limited by the smaller subset of the two arrays.
Definition Sub SubtractArray(TargetData() As Single, SourceData() As Single,

[TargetStartIndex As Long = 1], [TargetStep As Long = 1],

[SourceStartIndex As Long = 1], [SourceStep As Long = 1],

[Count As Long = -1])

Parameters TargetData Array containing output data

SourceData Array containing input data

TargetStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing output data

TargetStep (optional) Offset between two items to be processed in the array containing out-

put data

SourceStartIndex (optional) Position (1 – ...) of the first item to be processed in the array

containing input data

HistoryExplorer 57
SourceStep (optional) Offset between two items to be processed in the array containing in-

put data

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

SubtractValueSubtracts the fixed value Value from a subset of TargetData:
TargetData = TargetData - Value

Value is incremented by ValueIncrement after each operation.
DefinitionSub SubtractValue(TargetData() As Single, Value As Single,

[StartIndex As Long = 1], [Step As Long = 1],

[Count As Long = -1], [ValueIncrement As Single = 0])

ParametersTargetData Array containing output data

Value Value to be added

StartIndex (optional) Position (1 – ...) of the first item to be processed in the array

Step (optional) Offset between two items to be processed in the array

Count (optional) Maximum number of items to be processed. This specification is ignored if

the end of the array is reached before this number of elements has been processed. Spec-

ify the value -1 to continue processing up to the end of the array.

ValueIncrement (optional) The value of Value is incremented by this value after each sub-

traction operation.

2.11 HistoryExplorer

2.11.1 Description

The HistoryExplorer object represents the History Explorer.

2.11.2 Properties

VisibleThis flag specifies whether the History Explorer is visible (True or -1) or not (False or 0).

DefinitionVisible As Boolean

58 Chapter 2 Object classes
2.12 HistoryFile

2.12.1 Description

The HistoryFile object represents a history file.

2.12.2 Methods

AppendFile Appends the raw data of the specified history file to this history file. For detailed infor-
mation on this function, refer to the Analyzer User Manual.

Definition Sub AppendFile(FileName As String)

Parameters FileName Name of the history file to be appended
Example The example appends the history file P300b to the history file P300a.

Dim hf as HistoryFile

Set hf = HistoryFiles("p300a")

hf.AppendFile "p300b"

ApplyTemplate Applies the specified history template to the history file.
The file name can be specified in full or in part and, if possible, is completed automatically.

Definition Sub ApplyTemplate(FileName As String)

Parameters FileName Name of the history template to be used

Close Closes the history file. This should be done as soon as the file is no longer needed because
an open file may take up a considerable amount of memory in certain circumstances.

Definition Sub Close()

Compress Compresses the history file. If you frequently delete larger files (e.g. FFT) then empty spaces
are often left in the history file due to performance reasons. These areas can be removed with
the aid of compression.

Definition Sub Compress()

FindNextNode Searches for the next history node with the name specified in FindNode.

Definition Function FindNextNode() As HistoryNode

Return value Matching history node or Nothing if there is no further history node

FindNode Searches for the first history node which has the specified name.

HistoryFile 59
DefinitionFunction FindNode(Name As String) As HistoryNode

ParametersName Name of the history node

Return valueMatching history node or Nothing if there is no further history node
ExampleThe example uses FindNode and FindNextNode in a loop to rename all nodes with the

name Average to Avg.
Dim hn As HistoryNode

Dim hf As HistoryFile

Set hf = HistoryFiles(1)

Set hn = hf.FindNode("Average")

Do While Not hn Is Nothing

hn.Name = "Avg"

Set hn = hf.FindNextNode()

Loop

OpenOpens the history file. It is only possible to access the history nodes contained in a history
file after the history file has been opened.

DefinitionSub Open()

PurgeDeletedNodesIrrevocably deletes all history nodes in the history file that have been deleted but can still be
restored.

DefinitionSub PurgeDeletedNodes()

2.12.3 Properties

DisplayNameAlias of the history file as used by the Analyzer for display purposes. When a workspace has
been loaded, this name is initially identical to the Name property. A database program which
controls the Analyzer can use this property to display test subject's names, for example.

DefinitionDisplayName As String

FullNameWrite-protected
Name of the history file including the fully-qualified path.

DefinitionFullName As String

HistoryNodesDefault element, write-protected

60 Chapter 2 Object classes
Collection containing the raw data nodes in this history file. These raw data nodes generally
represent a raw EEG file. Most history files have just one raw data node because the raw EEG
file contains one data set only.
As well as raw files, the raw data nodes can also represent secondary history files such as
grand averages.

Definition HistoryNodes As HistoryNodes

IsOpen Write-protected
The value of this flag indicates whether the history file is open.

Definition IsOpen As Boolean

LinkedData Write-protected
The value of this flag indicates whether the history file represents a raw data set (primary
history file).

Definition LinkedData As Boolean

Name Write-protected
Base name of the history file without the folder and file name extension.

Definition Name As String

SubjectInfos Write-protected
Information about the test subject. This information is not available with all file formats.

Definition SubjectInfos As String

2.13 HistoryFiles

2.13.1 Description

The HistoryFiles object is a collection of HistoryFile objects.

2.13.2 Methods

FindFile Searches for a history file by its base name without the folder and filename extension.

Definition Function FindFile(Name As String) As HistoryFile

Parameters Name Name of the history file

HistoryNode 61
KillFileDeletes the specified history file.

DefinitionSub KillFile(DisplayName as String)

ParametersDisplayName Alias of the history file

RefreshGenerates or, as appropriate, loads new history files if new raw data or history files were gen-
erated after the workspace was loaded.

DefinitionSub Refresh()

SortSorts the history files in the collection and in the History Explorer display.

DefinitionSub Sort()

2.13.3 Properties

CountWrite-protected
Number of history files in the collection.

DefinitionCount As Long

ItemDefault element, write-protected
Returns a HistoryFile object from the collection. You can use the position of the file in
the collection or its name to specify the history file.

DefinitionItem(DisplayNameOrIndex As Variant) As HistoryFile

ParametersDisplayNameOrIndex Specifies the position of the history file in the collection (1 – ...) or

its alias

2.14 HistoryNode

2.14.1 Description

The HistoryNode object describes a node in the tree structure of a history file (history
tree). Such a node represents a data set. The data set is a raw file, or was created by a trans-
form. Because the HistoryNodes property has been defined as the default element, it is
very easy to access child nodes.

62 Chapter 2 Object classes
2.14.2 Example

You can access child nodes of the current node using either their name or their index in the
collection of all child nodes. Because HistoryNodes has been specified as the default el-
ement, you can omit the property. This means that the lines of code

Set node2 = node.HistoryNodes("Segmentation")

and

Set node2 = node("Segmentation")

are identical in meaning. Multiple calls of this type can be easily chained:

Set hn = HistoryFiles("File1")("Segmentation")(1)("Average")

2.14.3 Methods

ApplyTemplate Applies the specified history template to the history node.

Definition Sub ApplyTemplate(FileName As String)

Parameters FileName Name of the history template

Delete Removes the history node and all its child nodes from the history file.

Definition Sub Delete()

GetHeadSurface Fills the Data array with the coordinates of a point cloud that describes the head surface.

Definition Function GetHeadSurface(Data() As Single) as Boolean

Parameters Data The data consists of a continuous sequence of coordinates that describe the points in

the order radius, theta and phi.

Return value If there are no coordinates, the function returns the value False.

Hide Closes all open data windows that belong to this history node.

Definition Sub Hide()

PurgeDeletedNodes Irrevocably deletes all child nodes of this history node that have been deleted but can still
be restored.

Definition Sub PurgeDeletedNodes()

Show Shows the data of the node as the active tab in the Analyzer main window. If a tab containing
the data of the node is already open, a second tab is not opened.

HistoryNode 63
DefinitionSub Show()

ShowDescriptionShows the description that is stored in Description and Description2 in a dialog box.

DefinitionSub ShowDescription()

2.14.4 Properties

ClassWrite-protected
Name of the program component that created the node.

DefinitionClass As String

CommentUser comment.

DefinitionComment As String

ContainsDataWrite-protected
The value of this flag specifies whether the node contains data. The node can, for example,
also represent an export component. In this case it does not contain any data.

DefinitionContainsData As Boolean

DataAvailableWrite-protected
The value of this flag specifies whether the data of this node is available.
If the associated raw file is not in the raw data folder, then most data sets of a history file will
not be available.

DefinitionDataAvailable As Boolean

DatasetDescribes the data that belongs to the history node.
This object allows you to access the entire data set in order to query properties or data. In the
case of segmented data, additional Dataset objects are available representing individual
segments. These objects can be accessed using the Segments collection.

DefinitionDataset As Dataset

DeletedNodesWrite-protected
Collection containing the deleted child nodes that can still be restored.

DefinitionDeletedNodes As DeletedHistoryNodes

DescriptionWrite-protected

64 Chapter 2 Object classes
Description of the history node. This information describes the operation used to create the
node, together with its associated parameters.

Definition Description As String

Description2 Write-protected
Detailed information on the operation used to create the node. This information can differ
between input data sets even though the operation and parameters are the same. This infor-
mation is also used for calculated operation results such as the signal-to-noise ratio (SNR)
during averaging.

Definition Description2 As String

FullPath Write-protected
Fully qualified path of the node.
The path contains the name of the history file to which the node belongs and the name of all
predecessor nodes separated by a /.

Definition FullPath As String

HistoryFile Write-protected
History file containing the history node.

Definition HistoryFile As HistoryFile

HistoryNodes Default element, write-protected
Collection of child nodes of the node.

Definition HistoryNodes As HistoryNodes

Landmarks Write-protected
Collection of landmarks of the node.

Definition Landmarks As Landmarks

Name Name of the node as shown in the History Explorer.

Definition Name As String

ParentNode Write-protected
Parent node of the history node.

Definition ParentNode as HistoryNode

RecordingInfos Write-protected
Information that was input during acquisition, e.g. comments or error messages. This infor-
mation is normally only available for nodes which represent raw data. Whether information

HistoryNodes 65
is actually available or not also depends on the acquisition system and the file format being
used.

DefinitionRecordingInfos As String

SegmentsWrite-protected
Collection of all segment objects in the node.

DefinitionSegments As Segments

VersionWrite-protected
Version of the program component that created the node.

DefinitionVersion As String

WindowsWrite-protected
Collection of all data windows in the node.

DefinitionWindows As Windows

2.15 HistoryNodes

2.15.1 Description

The HistoryNodes object is a collection of HistoryNode objects.

2.15.2 Properties

CountWrite-protected
Number of history nodes in the collection.

DefinitionCount As Long

ItemDefault element, write-protected
Returns a HistoryNode object from the collection. You can use the position of the node in
the collection or its name to specify the history node.

DefinitionItem(NameOrIndex As Variant) As HistoryNode

ParametersNameOrIndex Specifies the position of the node in the collection (1 – ...) or its name

66 Chapter 2 Object classes
2.16 HistoryTemplateNode

2.16.1 Description

The HistoyTemplateNode object describes an individual node in a history template. It is
used in the Application.ActiveTemplateNode property.

2.16.2 Properties

Description Write-protected
Description of the node. This information describes the operation used to create the node,
together with its associated parameters.

Definition Description As String

2.17 Landmark

2.17.1 Description

The Landmark object allows significant head positions to be indicated.

2.17.2 Properties

Name Write-protected
Name of the landmark.

Definition Name As String

Phi Write-protected
Phi in degrees.

Definition Phi As Single

Landmarks 67
RadiusWrite-protected
Radius in millimeters. A value of 0 indicates an invalid position specification. The value of 1
assumes the head to be a perfect sphere with a uniform radius.

DefinitionRadius As Single

ThetaWrite-protected
Theta in degrees.

DefinitionTheta As Single

2.18 Landmarks

2.18.1 Description

The Landmarks object is a collection of Landmark objects.

2.18.2 Properties

CountWrite-protected
Number of markers in the collection.

DefinitionCount As Long

ItemDefault element, write-protected
Returns a Landmark object from the collection. You can use the position of the landmark in
the collection or its name to specify the landmark.

DefinitionItem(NameOrIndex As Variant) As Landmark

ParametersNameOrIndex Specifies the position of the landmark in the collection (1 – ...) or its name

2.19 License

2.19.1 Description

The License object describes a license for an optional program component of the Analyzer.

68 Chapter 2 Object classes
2.19.2 Properties

ID Write-protected
The unique identification number of the license.

Definition ID as Long

Description Write-protected
Description of the licensed program component.

Definition Description as String

2.20 Licenses

2.20.1 Description

The Licenses object is a collection of License objects.

2.20.2 Properties

Count Write-protected
Number of licenses in the collection.

Definition Count As Long

Item Default element, write-protected
Returns a License object from the collection.

Definition Item(Index As Long) As License

Parameters Index Specifies the position of the license in the collection (1 – ...)

2.21 Marker

2.21.1 Description

The Marker object represents a single marker in a data set.

Marker 69
2.21.2 Methods

PropertyNameReturns the name of a property of the marker.
This function can be used to list all properties of a marker including user-defined marker
properties.

DefinitionFunction PropertyName(Number As Long) As String

ParametersNumber Number of the marker property (1 – …)

Return valueName of the marker property with the number specified or an empty string if this property
does not exist

PropertyValueReturns the value of a marker property.

DefinitionFunction PropertyValue(Name As String) As Variant

ParametersName Name of the marker property to be read

Return valueValue of the specified marker property or Nothing if the property does not exist

2.21.3 Properties

ChannelNumberWrite-protected
Channel to which the marker refers (1 – ...). The value 0 means that the marker relates to all
channels.

DefinitionChannelNumber As Long

DateTimeWrite-protected
Date and time that the marker is representing. This value is only valid for "New Segment"
markers.

DefinitionDateTime As Date

DescriptionWrite-protected
Description of the marker.

DefinitionDescription As String

InvisibleWrite-protected
The value of this flag specifies whether the marker is invisible or not when the EEG is dis-
played.

DefinitionInvisible As Boolean

70 Chapter 2 Object classes
Points Write-protected
Length or duration of the marker in data points.

Definition Points As Long

Position Write-protected
Position of the marker in data points (1 – ...).

Definition Position As Long

PropertyCount Write-protected
Number of property values of the marker. This number includes all marker properties includ-
ing any user-defined marker properties.

Definition PropertyCount As Long

Type Write-protected
Type of marker.

Definition Type As String

2.22 Markers

2.22.1 Description

The Markers object is a collection of Marker objects.

2.22.2 Properties

Count Write-protected
Number of markers in the collection.

Definition Count As Long

Item Default element, write-protected
Returns a Marker object from the collection.

Definition Item(Index As Long) As Marker

Parameters Index Specifies the position of the marker in the collection (1 – ...)

NewHistoryNode 71
2.23 NewHistoryNode

2.23.1 Description

The NewHistoryNode object allows you to create new history nodes. You can create either
new child nodes in an existing history file or the raw data node of a new secondary history
file. For further information on how to use the NewHistoryNode object, refer to
Section 1.3 as of page 21.

2.23.2 Methods

AddMarkerInserts a marker in the new data set.

DefinitionSub AddMarker(ChannelNumber As Long, Position As Long,

Points As Long, Type As String, Description As String,

[Invisible As Boolean = False])

ParametersChannelNumber Number of the channel in which the marker is located. The value 0 means

that the marker relates to all channels.

Position Position of the marker in the data set in data points (1 – ...)

Points Length of the marker in data points

Type Marker type as freely definable text. Markers of the types "New Segment" and "Time 0"

are special cases.

Description Description of the marker. This appears in the EEG view.

Invisible (optional) If the value of this flag is set to True, the marker is not shown in the

EEG.

CancelCancels creation of the new node. Once you have called the Create or CreateEx method,
you should call either Cancel or Finish before the end of your BASIC script.

DefinitionSub Cancel()

CreateSpecifies important properties of the new data set. This includes the position of the data set
in the history tree and the number of channels.
After you have created a new NewHistoryNode object, you must initialize it using Create
or CreateEx before you can specify additional properties.

DefinitionSub Create(NodeName As String, ParentNode As HistoryNode,

[FileName As String = ""], [InheritData As Boolean = True],

[Type As VisionDataType = viDtTimeDomain],

72 Chapter 2 Object classes
[NumOfChannels As Long = 0], [Length As Long = 0], [SamplingIn-

terval As Double = 0])

Parameters NodeName Name of the new node

ParentNode The parent node of the new node. If the value of this parameter has been set to

Nothing, FileName must be set.

FileName (optional) File name without path or file name extension. Only use this parameter

if you wish to create the new node as a raw data node of a new secondary history file. If this

parameter has a value other than "" or vbNullChar, a new history file with this name will

be created in the currently open workspace.

InheritData (optional) If you create the node as a child node (see ParentNode parame-

ter) and the value of this flag is set, the data, properties and markers of the parent node

will be inherited. This allows you to add and delete markers, for instance. In this case, the

Type, NumOfChannels, Length and SamplingInterval parameters are ignored.

Type (optional) Type of the new data set. The four data types below are allowed:

viDtTimeDomain

viDtTimeDomainComplex

viDtFrequencyDomain

viDtFrequencyDomainComplex (see also Section 4.1 as of page 97)

NumOfChannels (optional) Number of channels in the new data set

Length (optional) Length of the new data set in data points

SamplingInterval (optional) Sampling interval in microseconds

CreateEx Specifies important properties of the new data set. This includes the position of the data set
in the history tree and the number of channels.
After you have created a new NewHistoryNode object, you must initialize it using Create
or CreateEx before you can specify additional properties.
This function is an enhanced version of Create. It permits the creation of data sets with sev-
eral frequency levels (layers) such as occur with continuous wavelets. The Type parameter
therefore also supports the data types viDtTimeFrequencyDomain and viDTimeFre-
quencyDomainComplex.

Definition Sub CreateEx(NodeName As String, ParentNode As HistoryNode, [File-

Name As String = ""], [InheritData As Boolean = True],

[Type As VisionDataType = viDtTimeDomain],

[NumOfChannels As Long = 0], [Length As Long = 0], [SamplingIn-

terval As Double=0], [Layers As Long = 1], [LayerLowerLimit As

Double=0], [LayerUpperLimit As Double=0], [LayerFunction As Vi-

sionLayerIncFunction= viLifLinear]))

Parameters NodeName Name of the new node

ParentNode Parent node of the new node. If the value of this parameter has been set to

Nothing, FileName must be set.

NewHistoryNode 73
FileName (optional) File name without path or file name extension. Only use this parameter

if you wish to create the new node as a raw data node of a new secondary history file. If this

parameter has a value other than "" or vbNullChar, a new history file with this name will

be created in the currently open workspace.

InheritData (optional) If you create the node as a child node (see ParentNode parame-

ter) and the value of this flag is set, the data, properties and markers of the parent node

will be inherited. This allows you to add and delete markers, for instance. In this case, the

Type, NumOfChannels, Length and SamplingInterval parameters are ignored.

Type (optional) Type of the new data set. The four data types below are allowed:

viDtTimeDomain

viDtTimeDomainComplex

viDtFrequencyDomain

viDtFrequencyDomainComplex (see also Section 4.1 as of page 97)

NumOfChannels (optional) Number of channels in the new data set

Length (optional) Length of the new data set in data points

SamplingInterval (optional) Sampling interval in microseconds

Layers (optional) Number of frequency levels in the data set

LayerLowerLimit (optional) Frequency assigned to the lowest frequency level

LayerUpperLimit (optional) Frequency assigned to the highest frequency level

LayerFunction (optional) Increment function between the frequency levels of a data set.

 You will find the possible values of this property in Chapter 4 as of page 97.

CreateWithChannelMapSpecifies important properties of the data set. This method replaces the Create or Cre-
ateEx call and can be used if you wish to take over some of the channels of the parent node
into the new data set and optionally wish to add further channels (see also Section 1.3.4
as of page 26).
In contrast to Create and CreateEx, you cannot create a raw data node of a new history
file. You can only create data sets that have a parent node. Specifications such as the length
of the data set or the data type are determined by the parent node.
The ChannelMap array allows you to specify what data is to appear in the channels of the
new data set. In this context, you can specify for each channel the number of a channel in the
parent node in order to take over the data of this channel. You can also specify 0 in order to
define the contents of the channel using WriteData. In this way, you can rearrange the
channels in any way you wish or delete them by omitting them from the specification.
If, for example, you use an array with the values (1, 0, 0, 2) as ChannelMap, you take over
the first channel of the parent node as the first channel of the new node and the second chan-
nel of the parent node as the fourth channel of the new node. The values of the second and
third channels of the new node are defined using WriteData. If the parent node contains a
third channel, this is not taken over.

DefinitionSub CreateWithChannelMap(NodeName As String,

ParentNode As HistoryNode, ChannelMap() as Long)

74 Chapter 2 Object classes
Parameters NodeName Name of the new node

ParentNode Parent node of the new node

ChannelMap This array specifies the source of the data for each channel of the new node.

Specify 0 in order to write new values to the channel in the node or specify a channel num-

ber of the parent node to take over this channel. The length of the array determines the

number of channels in the new node.

Finish Completes creation of the new node. Once you have called the Create or CreateEx meth-
od, you should call either Cancel or Finish before the end of your BASIC script.
If you call Finish from the integrated BASIC interpreter, execution of your script is automat-
ically terminated after the method has been processed. This means that any lines that follow
Finish will no longer be executed.

Definition Sub Finish()

RemoveMarker Removes the marker corresponding to the description. Uppercase/lowercase and spaces in
Type and Description are ignored in the comparison.

Definition Sub RemoveMarker(ChannelNumber As Long, Position As Long,

Points As Long, Type As String, Description As String)

Parameters ChannelNumber Number of the channel in which the marker is located. The value 0 means

that the marker relates to all channels.

Position Position of the marker in the data set in data points (1 – ...)

Points Length of the marker in data points

Type Marker type as freely definable text. Markers of the types "New Segment" and "Time 0"

are special cases.

Description Description of the marker. This appears in the EEG view.

SetChannelName Sets the name of a channel.

Definition Sub SetChannelName(ChannelNumber As Long, NewName As String)

Parameters ChannelNumber Number of the channel (1 – ...)

NewName Name of the channel

SetChannelPosition Sets the position of a channel.

Definition Sub SetChannelPosition(ChannelNumber As Long, Radius As Single,

Theta As Single, Phi As Single)

NewHistoryNode 75
ParametersChannelNumber Number of the channel (1 – ...)

Radius Radius in millimeters. Set the value 0 if the channel does not have any valid head co-

ordinates. Set the value 1 if you assume that the head is an ideal sphere with a uniform

radius.

Theta Theta in degrees

Phi Phi in degrees

SetChannelUnitSets the unit for the data of a channel, e.g. μV, μV2 (see also Section 4.2 on page 98). If
the unit is not set for a channel, the channel is assigned the unit specified for the entire data
set in the Unit property.

DefinitionSub SetChannelUnit(ChannelNumber As Long, Unit As VisionDataUnit)

ParametersChannelNumber Number of the channel (1 – ...)

Unit Unit for the data of the channel

SetChannelUserPropertySets a user-defined property for a channel. The name of the property should comprise a
namespace (e.g. institute name), a period and then the actual name of the property. The
namespace "BrainVision." is reserved.

DefinitionSub SetChannelUserProperty(ChannelNumber as Long,

PropertyName as String, PropertyValue as Variant)

ParametersChannelNumber Number of the channel (1 – ...)

PropertyName Name of the property to be set

PropertyValue Value to be set

SetDatasetUserPropertySets a user-defined property for a data set. The name of the property should comprise a
namespace (e.g. institute name), a period and then the actual name of the property. The
namespace "BrainVision." is reserved.

DefinitionSub SetDatasetUserProperty(PropertyName as String,

PropertyValue as Variant)

ParametersPropertyName Name of the property to be set

PropertyValue Value to be set

SetHeadLandmarkSets a named landmark for the purposes of orientation.

DefinitionSub SetHeadLandmark(Name As String, Radius As Single,

Theta As Single, Phi As Single)

76 Chapter 2 Object classes
Parameters Name Name of the landmark

Radius Radius in millimeters. Set the value 1 if you assume that the head is an ideal sphere

with a uniform radius.

Theta Theta in degrees

Phi Phi in degrees

SetHeadSurface Describes the head surface as a point cloud. Data stands for a continuous sequence of co-
ordinates that describe the points in the order radius, theta and phi.

Definition Sub SetHeadSurface(Data() As Single)

Parameters Data Coordinates of the points

SetMarkerUserProperty Sets a user-defined property for a marker. The first parameters identify the marker in which
the property is to be set. The last two parameters specify the name and value of the property.
The name of the property should comprise a namespace (e.g. institute name), a period and
then the actual name of the property. The namespace "BrainVision." is reserved.

Definition Sub SetMarkerUserProperty(ChannelNumber as Long, Position as Long,

Points as Long, Type as String, Description as String, Proper-

tyName as String, PropertyValue as Variant)

Parameters ChannelNumber Number of the channel in which the marker is located. The value 0 means

that the marker relates to all channels.

Position Position of the marker in the data set in data points (1 – ...)

Points Length of the marker in data points

Type Marker type as freely definable text. Markers of the types "New Segment" and "Time 0"

are special cases.

Description Description of the marker. This appears in the EEG view.

PropertyName Name of the property to be set

PropertyValue Value to be set

SetRefChannelName Sets the name of the channel that is to be used as the reference channel for the specified
channel.

Definition Sub SetRefChannelName(ChannelNumber As Long, NewName As String)

Parameters ChannelNumber Number of the channel (1 – ...)

NewName Name of the referenced channel

SetSecondChannelPosition Sets an additional position that describes the channel on the head surface. This specifica-
tion is used when an additional position is assigned to a channel in addition to its own coor-
dinates (for instance with the Coherence transform).

Definition Sub SetSecondChannelPosition(ChannelNumber As Long,

Radius As Single, Theta As Single, Phi As Single)

NewHistoryNode 77
ParametersChannelNumber Number of the channel (1 – ...)

Radius Radius in millimeters. Set the value 0 if the channel does not have any valid head co-

ordinates. Set the value 1 if you assume that the head is an ideal sphere with a uniform

radius.

Theta Theta in degrees

Phi Phi in degrees

TryLaterThis function is only needed if a macro is used in a history template. If information from a his-
tory node which is neither the current node nor the parent of the current node is needed to
calculate the new data set in this case, then this node may not have been calculated as yet.
Calling this function informs the program of this. In this case the program will continue with
creation of other history nodes and will try to create the node again later.

DefinitionSub TryLater()

WriteDataWrites data to the data set.
You can write data either channel by channel or simultaneously for all channels. For reasons
of performance, it is recommended that you write data to all channels simultaneously.
If you have used CreateWithChannelMap, you only need to write data to those channels
that you actually wish to create from scratch. For example, if you have specified 0 twice as
the number of the source channel, you should use WriteData in exactly the same way as if
you wanted to create a data set containing only two channels.
You can use the Position and Points parameters to write the data section by section.
This is necessary if the data set is too large for the available memory, for example. Although
it is possible to write the sections out of sequence, this approach is not recommended for
reasons of performance.
It is possible that each data point that is to be written is made up of multiple values. This is
the case if you are writing multiple channels simultaneously, but also if the data set contains
complex data, for instance. In this event, the values within a data point are always multi-
plexed.

DefinitionSub WriteData(ChannelNumber As Long, Position As Long,

Points As Long, Data() As Single)

ParametersChannelNumber Number of the channel to be written. The value 0 means that the block cov-

ers all channels. In this case the data must be available in multiplexed form.

Position Number of the first data point to be written (1 – ...)

Points Number of data points to be written

Data Data to be written

78 Chapter 2 Object classes
2.23.3 Properties

Averaged Set this flag if the data set contains averaged data. Among other things, this specification is
used to lock or unlock transforms in the Transformations tab.

Definition Averaged As Boolean

Description Reads or sets the description of the operation and its input parameters.

Definition Description As String

Description2 Reads or sets the description of the operation results.

Definition Description2 As String

SegmentationType Reads or sets the segmentation type of the data set. The segmentation types are de-
scribed in Section 4.3 on page 99. Among other things, the segmentation type is used to lock
or unlock transforms in the Transformations tab.

Definition SegmentationType As VisionSegType

Unit Reads or sets the unit for the data in the data set, e.g. μV, μV2 (see also Section 4.2 on
page 98).
This unit applies to all channels whose unit has not been set explicitly with SetChannel-
Unit().

Definition Unit As VisionDataUnit

2.24 ProgressBar

2.24.1 Description

The ProgressBar object represents a progress bar. Use a progress bar to keep the user in-
formed of the progress of long-running calculations and to allow the calculation to be can-
celed.

If multiple progress bars are created at the same time, they are arranged vertically in the
same window.

ProgressBar 79
2.24.2 Example

There are two ways of creating an object of the ProgressBar class. If you have included the
type library for Analyzer Automation, you can write

Dim pb as New ProgressBar

The type library is automatically included in the integrated BASIC, and you can use this state-
ment. If you have not included the type library, you must instead write the following:

Set pb = CreateObject("VisionAnalyzer.ProgressBar")

The example below shows how to use two nested progress bars. The program is momentarily
paused in the inner loop in order to prevent the progress bars from moving too fast. A real
application would perform a calculation in place of this pause.

A check is performed in both the inner and outer loops to see whether the user has clicked
Cancel. It is sufficient for the user to click once. This causes both progress bars to be placed
in the state "Cancel" and their UserCanceled property to be set to True.

Sub Main

Dim pb1 As New ProgressBar

Dim pb2 As New ProgressBar

' Initialize objects

pb1.Init "This title will not be shown", "First Bar"

pb2.Init "ProgressBar Demo", "Second Bar"

' Set value range for progress bar

pb1.SetRange 0, 5

pb2.SetRange 0, 100

pb1.SetStep 1

pb2.SetStep 1

For i = 1 To 5

For j = 1 To 100

' Terminate loop if the user clicks "Cancel"

If pb2.UserCanceled Then

Exit For

End If

' Move progress bar 2

80 Chapter 2 Object classes
pb2.StepIt

' Wait in place of a calculation

Wait .001

Next j

' Terminate loop if the user clicks "Cancel"

If pb1.UserCanceled Then

Exit For

End If

' Move progress bar 1

pb1.StepIt

' Set progress bar 2 to start

pb2.SetPosition(0)

Next i

pb1.SetText "Done 1"

pb2.SetText "Done 2"

' Wait 2 seconds before the bars are removed

Wait 2

End Sub

2.24.3 Methods

Hide Hides the progress bar window.

Definition Sub Hide()

Init Initializes the progress bar and displays it.

Definition Sub Init(Title As String, Text As String)

Parameters Title Title of the progress bar. In the case of nested progress bars, only the title of the first

bar is displayed.

Text The text associated with the progress bar. The text can be changed subsequently with

SetText.

ProgressBar 81
OffsetPositionSets the position of the progress bar relative to the current position. The position specifies
the state that has been reached between the upper and lower range limits.

DefinitionSub OffsetPosition(Position As Long)

ParametersPosition New position of the progress bar relative to the old position

SetPositionSets the position of the progress bar. The position specifies the state that has been reached
between the upper and lower range limits.

DefinitionSub SetPosition(Position As Long)

ParametersPosition New position of the progress bar

SetRangeSets the upper and lower range limits. These values are set to 0 and 100 by default.

DefinitionSub SetRange(Lower As Long, Upper As Long)

ParametersLower The lower limit of the range shown

Upper Upper limit of the range shown

SetStepSets the step size that is used with StepIt. The default value is 10.

DefinitionSub SetStep(Step As Long)

ParametersStep Length of the increment for the progress bar

SetTextThis function replaces the existing text.

DefinitionSub SetText(Text As String)

ParametersText The text associated with the progress bar

ShowShows the progress bar window.

DefinitionSub Show()

StepItMoves the position forward by the step length set in SetStep. The position specifies the
state that has been reached between the upper and lower range limits.

DefinitionSub StepIt()

82 Chapter 2 Object classes
2.24.4 Properties

UserCanceled This flag is set if the user has clicked Cancel.
Query this value in the outer loop of a long calculation, for instance, to determine whether
the calculation should be canceled.

Definition UserCanceled As Boolean

2.25 Segment

2.25.1 Description

The Segment object describes a single data segment within a history node.

2.25.2 Properties

Dataset Write-protected
This Dataset object describes the data of a segment. The data set is a subset of the data
set that contains the segment. All position specifications in this data set relate to the begin-
ning of the segment.
The Markers collection of this object no longer contains any "New Segment" markers.

Definition Dataset As Dataset

DateTime Write-protected
Date and time of the beginning of the segment.

Definition DateTime As Date

TimeZeroOffset Write-protected
Position of the zero time point relative to the start of the segment in data points.

Definition TimeZeroOffset As Long

Segments 83
2.26 Segments

2.26.1 Description

The Segments object is a collection of Segment objects.

2.26.2 Properties

CountWrite-protected
Number of segments in the collection.

DefinitionCount As Long

ItemDefault element, write-protected
Returns a Segment object from the collection.

DefinitionItem(Index As Long) As Segment

ParametersIndex Specifies the position of the segment in the collection (1 – ...)

2.27 Transformation

2.27.1 Description

You can call some primary transforms of the Analyzer with parameters using the Transfor-
mation object. A list of supported transforms and their parameters is given in Chapter 3
as of page 91.

The advantage of this approach compared with calling a transform via the Transformations
tab is that it enables dynamic parameterization. In other words, the parameters for the trans-
form can be determined at runtime. This means, for example, that results of previously com-
pleted operations can be taken into account.

 For further information on how to use the Transformation object, refer to Section 1.5
as of page 30.

84 Chapter 2 Object classes
2.27.2 Methods

Do Performs a transform.
The behavior of the transform is controlled by its parameters. Suitable parameters for
each transform that can be called dynamically are defined in Chapter 3 as of page 91.

Definition Sub Do(Transformation As String, Parameters As String,

ParentNode As HistoryNode, [NodeName As String])

Parameters Transformation Name of the transform

Parameters Transform parameters

ParentNode The node to which the transform is applied

NodeName (optional) Name of the node created by the transform. If no name is input, it is as-

signed by the transform.

TryLater This function is only needed if a macro is used in a history template. If information from a his-
tory node which is neither the current node nor the parent of the current node is needed to
calculate the new data set in this case, then this node may not have been calculated as yet.
Calling this function informs the program of this. In this case the program will continue with
creation of other history nodes and will try to create the node again later.

Definition Sub TryLater()

2.28 Window

2.28.1 Description

The Window object describes a tab in the main window. A tab of this sort would typically con-
tain an EEG view, for instance. You can use a Window object to control the behavior of an EEG
view.

2.28.2 Methods

ActivateTransientTransfor-
mation

Allows a transient transform to be called. This method can only be used if an EEG view with
a selected range is shown in the tab.

Definition Sub ActivateTransientTransformation(Name As String)

Parameters Name Name of the transient transform

Window 85
ExampleThe example selects an interval in the currently open node and creates a transient FFT view.
ActiveNode.Windows(1).SetMarkedInterval(1001,512)

ActiveNode.Windows(1).ActivateTransientTransformation "FFT"

CloseCloses the tab.

DefinitionSub Close()

CopyCopies the contents of the tab to the clipboard as an image. This method can only be used if
an EEG view is shown in the tab.

DefinitionSub Copy()

MaximizeMaximizes the window. This method can only be used if data that is open in the main window
is represented in windows and not in the form of tabs.

DefinitionSub Maximize()

MinimizeMinimizes the window. This method can only be used if data that is open in the main window
is represented in windows and not in the form of tabs.

DefinitionSub Minimize()

PrintPrints the content of the tab. This method can only be used if an EEG view is shown in the tab.

DefinitionSub Print()

RestoreRestores the window to its original size. This method can only be used if data that is open in
the main window is represented in windows and not in the form of tabs.

DefinitionSub Restore()

SetDisplayedIntervalSets the data range displayed in the EEG view. This method can only be used if an EEG view
is shown in the tab.

DefinitionSub SetDisplayedInterval(Position as Long, DataPoints as Long)

ParametersPosition The first data point displayed (1 – ...)

DataPoints Number of data points displayed

SetMarkedIntervalSets the selected range in the EEG view. This method can only be used if an EEG view is
shown in the tab. The range must lie within the displayed interval.

DefinitionSub SetMarkedInterval(Position as Long, DataPoints as Long)

ParametersPosition The first selected data point (1 – ...)

DataPoints Number of data points selected

86 Chapter 2 Object classes
MoveMarkedInterval Moves the selected range in the EEG view. This method can only be used if an EEG view is
shown in the tab.

Definition Sub MoveMarkedInterval(Points as Long)

Parameters Points Number of data points by which the range is to be moved

SetScalingRange Sets the scaling range of the EEG view. This method can only be used if an EEG view is shown
in the tab.

Definition Sub SetScalingRange(MinValue as Single, MaxValue as Single)

Parameters MinValue Lower limit of the scaling range

MaxValue Upper limit of the scaling range

ResetScalingRange Resets the scaling range of the EEG view to the default. This method can only be used if an
EEG view is shown in the tab.

Definition Sub ResetScalingRange()

2.28.3 Propert ies

DisplayBaselineCorrection Switches baseline correction of the EEG view on or off. Only the baseline of the display is
changed, not the data itself. This property can only be used if an EEG view is shown in the tab.

Definition DisplayBaselineCorrection As Boolean

DisplayDataPoints Write-protected
Number of data points shown in the EEG view. This property can only be used if an EEG view
is shown in the tab.

Definition DisplayDataPoints as Long

DisplayStartPosition Write-protected
The first data point shown in the EEG view (1 – ...). This property can only be used if an EEG
view is shown in the tab.

Definition DisplayStartPosition as Long

HistoryNode Write-protected
Returns the history node whose data is being displayed. This property can only be used if an
EEG view is shown in the tab.

Definition HistoryNode As HistoryNode

Windows 87
MarkedIntervalDataPointsWrite-protected
Number of data points selected in the EEG view. This property can only be used if an EEG view
is shown in the tab.

DefinitionMarkedIntervalDataPoints as Long

MarkedIntervalStartPosi-
tion

Write-protected
The first data point selected in the EEG view (1 – ...). This property can only be used if an EEG
view is shown in the tab.

DefinitionMarkedIntervalStartPosition as Long

TitleTitle of the tab.

DefinitionTitle As String

TypeWrite-protected
Type of the tab. This value is "EEGData" if an EEG view is shown in the tab.

DefinitionType As String

Return valueEEGData EEG data window

Macro Macro editing window (for editing the BASIC source code)

Template Template editor (for editing history templates)

ExampleThe example selects a data range in the currently active tab, provided that this is actually a
view showing EEG data.
If ActiveNode.Windows(1).Type = "EEGData" Then

ActiveNode.Windows(1).SetMarkedInterval(1000,512)

End If

2.29 Windows

2.29.1 Description

The Windows object is a collection of Window objects corresponding to the tabs in the main
window.

88 Chapter 2 Object classes
2.29.2 Properties

Count Write-protected
Number of tabs.

Definition Count As Long

Item Default element, write-protected
Returns a Window object from the collection.

Definition Item(TitleOrIndex As Variant) As Window

Parameters TitleOrIndex Specifies the position of the tab in the collection (1 – ...) or its title

2.30 Workspace

2.30.1 Description

The Workspace object describes an Analyzer workspace.

2.30.2 Properties

ExportFileFolder Write-protected
Default folder for exported files.

Definition ExportFileFolder As String

FullName Write-protected
Name of the workspace file including fully-qualified path.

Definition FullName As String

HistoryFileFolder Write-protected
Folder for history files.

Definition HistoryFileFolder

Name Write-protected
Base name of the workspace file without folder and file name extension.

Definition Name As String

Workspaces 89
RawFileFolderWrite-protected
Folder for raw data.

DefinitionRawFileFolder As String

2.31 Workspaces

2.31.1 Description

The Workspaces object is a collection of Workspace objects. It is used in the Applica-
tion object to list all the workspaces in the Workfiles folder.

2.31.2 Methods

RefreshRereads the workspace files that are present in the Workfiles folder.

DefinitionSub Refresh()

2.31.3 Properties

CountWrite-protected
Number of workspaces available.

DefinitionCount As Long

ItemDefault element, write-protected
Returns a Workspace object from the collection.

DefinitionItem(NameOrIndex As Variant) As Workspace

ParametersNameOrIndex Specifies the position of the workspace in the collection (1 – ...) or its name



91

Brai

Chapter 3 Callable transforms
The currently available transforms and their parameters are listed in this chapter. They can
be called as follows:

Transformation.Do(Transformation As String, Parameters As String,

ParentNode As HistoryNode, [NodeName As String])

The sections below describe the Transformation and Parameters arguments for the
different transforms.

The following general syntax is used irrespective of the transform that is being called in order
to pass the transform parameters to the Do method.

The notation for the parameters always takes the form of variable/value pairs. Variable
names are not case-sensitive. If multiple variables are specified, they are separated by semi-
colons (;). The following example uses the variables Highcutoff, Lowcutoff and
Notch:

Transformation.Do "Filters", _

"Highcutoff=70;Lowcutoff=2;Notch=50", ActiveNode,"Test"

If a variable has multiple values, these are separated by commas (,):

Transformation.Do "Filters", _

"Highcutoff=70.48;Lowcutoff=2.24;Notch=50", ActiveNode,"Test"

If variables are defined as vectors, the elements are indexed with parentheses (). The first
index is 1. A value without parentheses is interpreted the same as a value with index (1), i.e.
Highcutoff is equal to Highcutoff(1):

Transformation.Do "Filters", "Highcutoff = 12,48;" & _

"Highcutoff(3)=70,48; Lowcutoff(3) = 2; Notch(3)=50", _

ActiveNode, "Test"

The variables can occur in any sequence in the parameters.

 For detailed information on the transforms below, refer to the Analyzer User Manual.
Here, we shall only describe the parameter syntax for the transforms.
nVision Analyzer Automation Reference Manual | Manual Version 003 | September 30, 2013

92 Chapter 3 Callable transforms
3.1 Band Rejection

Name of the transform: BandRejection

Examples:

Transformation.Do "BandRejection", "Filter=20,2,4", ActiveNode

This defines a band rejection filter of 20 Hz with a bandwidth of 2 Hz and an order of 4. All
channels are filtered.

Transformation.Do "BandRejection", _

"Filter(1)=20,2,4; Filter(2)=30,3,4;Channels=2,4,16", _

ActiveNode

This defines a band rejection filter of 20 Hz with a bandwidth of 2 Hz and an order of 4, plus
a filter of 30 Hz, a bandwidth of 3 Hz and an order of 4. Channels 2, 4 and 16 are filtered.

Transformation.Do "BandRejection", _

"Filter=20,2,2;NamedChannels=Fp1", ActiveNode

Here, the Fp1 channel is filtered with a band rejection filter of 20 Hz, a bandwidth of 2 Hz and
an order of 2.

Table 3-1. Parameters for Band Rejection

Variable Description

Filter A band rejection filter is defined. The variable can be indexed
since multiple filters can be defined. A filter is always
described by three values: Frequency, bandwidth and order.
The order can only be 2 or 4. Example: Fil-
ter(1)=17,2,4;Filter(2)=50,2,2;

Channels This variable lists the channels to be filtered by number.
Example: Channels=1,2,15
The variable is not allowed to be defined at the same time as
the NamedChannels variable.
If neither Channels nor NamedChannels has been defined,
all channels are filtered.

NamedChannels Here, the channels to be filtered can be listed by name.
Example: NamedChannels=Fp1,F7,Oz
This variable is not allowed to be defined at the same time as
the Channels variable.

Complex Demodulation 93
3.2 Complex Demodulation

Name of the transform: ComplexDemodulation

Example:

Transformation.Do "ComplexDemodulation", _

"output=phase;begin=10;end=20", ActiveNode

The phase is output for the frequency band 10 Hz through 20 Hz.

3.3 Formula Evaluator

Name of the transform: Formula

Table 3-2. Parameters for Complex Demodulation

Variable Description

output Use this variable to specify whether the power or phase is to
be output. This variable accepts the values power and
phase.

begin Start of the frequency band in hertz.

end End of the frequency band in hertz.

Table 3-3. Parameters for Formula Evaluator

Variable Description

Formula This variable describes the formula for calculating a new chan-
nel as text. Since several formulas can be defined, the variable
can be indexed. The formula is input in accordance with the
syntax of the Formula Evaluator. For a description of the syn-
tax, refer to the Analyzer User Manual. Example:
Formula(1) = Fp1Power = Fp1 * Fp1

94 Chapter 3 Callable transforms
Examples:

Transformation.Do "Formula", _

"Formula(1) = RelationFp1Fp2 = Fp1 / Fp2; Unit(1) = none", _

ActiveNode

The new data set contains a new channel named RelationFp1Fp2. The data does not have a
unit. The data of the parent node is not kept.

Transformation.Do "Formula", "Formula(1) = Fp1' = " & _

"(shift(Fp1, -1) + Fp1 + shift(Fp1, 1)) / 3;" & _

"Formula(2) = Fp2' = (shift(Fp2, -1) + Fp2 + " & _

"shift(Fp2, 1)) / 3; KeepOldChannels = True", _

ActiveNode, "Test"

Two new channels, Fp1' and Fp2', are created. The unit for these channels is μV, as the unit
was not explicitly defined. The data of the parent node is kept.

Unit This variable describes the unit for a newly calculated chan-
nel. If the unit is not specified, microvolts are taken by default.
The possible values are (µ can be replaced by u, ² can be
replaced by 2, and no distinction is made between uppercase
and lowercase):
None (without a unit)
µV or uV
μV/Hz or uV/Hz
μV² or uV2
μV²/Hz or uV2/Hz
μV/m² or uV/m2
Example:
Unit(1) = uV2

KeepOldChannels This variable accepts the values False and True. It defines
whether the data of the parent node is to be included in the
new data set. Example:
KeepOldChannels = True

Table 3-3. Parameters for Formula Evaluator

Variable Description

IIR Filters 95
3.4 IIR Filters

Name of the transform: Filters

Examples:

Transformation.Do "Filters", "HighCutoff=70", ActiveNode

A high-cutoff filter of 70 Hz is defined. Since the slope is not specified, 12 db/octave is used.
All channels are filtered.

Transformation.Do "Filters", _

"LowCutoff(10)=0.535,48;HighCutoff(10)=70,48;Notch(10)=50", _

ActiveNode

Only channel ten is filtered here. This is done with a low-cutoff filter of 0.535 Hz, 48 db/oc-
tave, a high-cutoff filter of 70 Hz, 48 db/octave and a notch filter of 50 Hz.

Table 3-4. Parameters for IIR Filters

Variable Description

LowCutoff A low-cutoff filter is defined. The variable can be indexed. In
this case, the index signifies the number of the channel to be
filtered. The filter is described by two values – frequency and
slope in db/octave. The slope can have the value 12, 24 or 48.
If it is not specified, 12 is taken by default. Example:
LowCutoff(1)=2,24;LowCutoff(2)=4;

HighCutoff This variable relates to a high-cutoff filter. Otherwise the
description of the low-cutoff filter above also applies to this
filter. Example:
HighCutoff(1)=70,24;HighCutoff(2)=70;

Notch A band rejection filter can be specified for power-line noise. A
channel can be indexed here, too, in the same way as for low-
cutoff and high-cutoff filters. The permissible values for this
filter are 50 or 60. Example:
Notch=50

IndividualFilters This variable accepts the values False and True. This vari-
able defines whether the channels are to be filtered individu-
ally or if they are all to be given the same filters.
Normally the program will autonomously decide whether indi-
vidual filtering is required. If an index greater than 1 is used
somewhere in the filter parameters, it switches to individual
filtering. Otherwise all channels are filtered in the same way.
The variable therefore only has to be set to True if just the
first channel needs to be filtered. Example:
IndividualFilters=True

96 Chapter 3 Callable transforms
Transformation.Do "Filters", "IndividualFilters=True; " & _

"LowCutoff(1)=2", ActiveNode, "Test"

Here, only the first channel is filtered. Filtering is performed with a low-cutoff filter of 2 Hz.



97

Brai

Chapter 4 Enumerator types
This chapter describes the various enumerator types.

Note that the integrated BASIC interpreter does not permit declaration of enumerator vari-
ables.

The example below will trigger an error message to this effect:

Dim vdt As VisionDataType

vdt = viDtTimeDomain

Therefore, wherever you wish to use enumerators as variables, you should declare the vari-
able as the type Long:

Dim vdt As Long

vdt = viDtTimeDomain

4.1 VisionDataType

The enumerator type VisionDataType defines constants for the various data types that a
history node can manage.

The individual constants and the values associated with them are listed in Table 4-1. The nu-
meric values are specified as hexadecimal numbers in BASIC notation. The numeric values
were not selected arbitrarily. The last hexadecimal digit of real data types is always 1 and the
last hexadecimal digit of complex data types is always 2.

Table 4-1. Values of the enumerator type "VisionDataType"

Identifier Numeric
value

Meaning

viDtTimeDomain &H101 Data in the time domain

viDtTimeDomainComplex &H102 Complex data in the time
domain

viDtFrequencyDomain &H201 Data in the frequency domain

viDtFrequencyDomainComplex &H202 Complex data in the frequency
domain

viDtTimeFrequencyDomain &H301 Data in the time-frequency
domain (e.g. wavelet data)

viDtTimeFrequencyDomainComplex &H302 Complex data in the time-fre-
quency domain (e.g. wavelet
data)

viDtUserDefined &H10001 User-defined data type
nVision Analyzer Automation Reference Manual | Version 003 | September, 30 2013

98 Chapter 4 Enumerator types
4.2 VisionDataUnit

The enumerator type VisionDataUnit defines constants for the various units that can be
used in EEG channels.

If a channel uses viDuUnitless as the value of its Unit property, the convention is that it
can also use a user-defined unit. In this case, the user-defined unit is entered as a value of
the UnitString property. This convention was chosen in order to allow known units to con-
tinue to be processed automatically (viDuMicrovoltSquare as power values) while at
the same time completely excluding user-defined units from any such processing.

The individual constants and the values associated with them are listed in Table 4-2.

viDtUserDefinedComplex &H10002 User-defined data type, com-
plex

viDtUserDefinedNoMatrix &H100FF User-defined data type that
does not fit in the standard
matrix

Table 4-2. Values of the enumerator type "VisionDataUnit"

Identifier Numeric
value

Meaning

viDuMicrovolt 0 μV

viDuUnitless 1 Without a unit

viDuMicrovoltsPerHertz 2 μV/Hz

viDuMicrovoltSquare 3 μV2

viDuMicrovoltSquarePerHertz 4 μV2/Hz

viDuMicrovoltPerMeterSquare 5 μV/m2

Table 4-1. Values of the enumerator type "VisionDataType"

Identifier Numeric
value

Meaning

VisionSegType 99
4.3 VisionSegType

The enumerator type VisionSegType defines constants for the various segmentation
types that can be used in EEG data sets.

Data sets whose segmentation type is "not segmented" or viStNotSegmented can never-
theless contain "New Segment" markers. In this event, the "New Segment" markers indicate
interruptions during recording rather than segments in the traditional sense.

The convention is that the segments of a data set whose segmentation type is viStMarker,
viStMarkerAndABE or viStFixedTime must all be the same length. This assumption is
important in many scenarios, e.g. for the Average transform. You should avoid creating data
sets, for example with NewHistoryNode, that do not observe this convention and which
can therefore not be processed meaningfully.

The individual constants and the values associated with them are listed in Table 4-3.

4.4 VisionLayerIncFunction

The enumerator type VisionLayerIncFunction defines constants for the increment
functions between the frequency levels (layers) of a data set. Frequency levels occur with
continuous wavelets, for instance.

The increment function specifies what frequencies are assigned to the individual frequency
levels. The frequencies of the top and bottom levels and the number of levels are predeter-
mined. The frequencies of the intermediate levels are then determined in such a way that the
range between the top and bottom frequencies is divided in the ways specified by the incre-
ment function. For example, if viLifLinear is used, the frequency levels are arranged at
constant intervals.

Table 4-3. Values of the enumerator type "VisionSegType"

Identifier Numeric
value

Meaning

viStNotSegmented 0 Not segmented

viStMarker 1 Segmented relative to marker position

viStMarkerAndABE 2 Segmented relative to marker position with the
aid of an ABE expression

viStFixedTime 3 Segmented in fixed time units

vistManual 4 Segmented manually; segments of different
lengths are possible

100 Chapter 4 Enumerator types
The individual constants and the values associated with them are listed in Table 4-4.



Table 4-4. Values of the enumerator type "VisionLayerIncFunction"

Identifier Numeric
value

Meaning

viLifLinear 0 Linear (i.e. a constant interval between the
frequency levels)

viLifLogarithmic 1 Logarithmic distance between the fre-
quency levels

VisionLayerIncFunction 101

102 Chapter 4 Enumerator types

103

Brai

Chapter 5 Error codes
This chapter lists the error codes used by Analyzer Automation along with the associated
messages. These error codes are set when an error occurs during execution of an Automation
call.

The error numbers only indicate the lower 15 bits of the error code. To extract the error num-
ber, the upper bits of the error code have to be masked out.

If a macro has not defined any custom error handling, the error message associated with the
error number is displayed in the status bar of the macro editing window. The programming
example below shows how to use the error handling provided by the integrated BASIC inter-
preter to show custom error messages:

Sub Main

' Initialize error handling

On Error GoTo CheckError

Set hf = HistoryFiles(1)

MsgBox "First channel name: " + hf(1).Dataset.Channels(1).Name

Exit Sub

CheckError:

' Extract Automation error number

nError = Err.Number And &h7fff

Select Case nError

Case 1501

' Code for "History file is closed."

MsgBox "History file is closed."

End Select

End Sub

Table 5-1 lists all the error codes used.

Table 5-1. Error codes

Code Message

1500 Display name of History File: Invalid characters found in '%s'. '%s' can't
be used for naming.
nVision Analyzer Automation Reference Manual | Version 003 | September, 30 2013

104 Chapter 5 Error codes
1501 History file is closed.

1502 Can't handle this data type.

1503 History node is invalid.

1504 History node not found.

1505 The data set is currently not available.

1506 History file is invalid.

1507 History node does not contain data.

1508 History file not found.

1509 Can't access workspace.

1510 Index is out of range.

1511 A history node with the same name already exists.

1512 Rename History Node: Invalid characters found in '%s'. '%s' can't be
used for naming.

1513 Channel not found.

1514 No workspace is loaded.

1515 Window does no longer exist.

1516 Requested data is out of segment range.

1517 Window not found.

1518 History node collection is invalid.

1519 History template not found.

1520 History Template: Type mismatch.

1521 User canceled history template processing.

1522 The start node '%s' was not found in the history template '%s'.

1523 User defined message.

1524 A history file with this display name already exists in the current work-
space.

1525 Can't change display name on open history file.

1526 'Create' has not been called.

1527 Invalid data size or format.

1528 Channel is out of range.

1529 NewHistoryNode.Create: Invalid data type.

1530 NewHistoryNode.Create: Parameters mismatch.

1531 NewHistoryNode.AddMarker: Marker out of range.

Table 5-1. Error codes

Code Message

 105


1532 NewHistoryNode.WriteData: Can't write data. Data set inherits data.

1533 Transformation.Do: Transformation '%s' not found.

1534 Transformation.Do: '%s', parameters '%s' are not correct.

1535 Transformation.Do: Type mismatch

1536 <Error, warning or other message from Transformation>

1537 Dataset.GetData: The "ChannelList" parameter is incorrect.

1538 The requested data layer is out of range.

1539 The requested number of layers is invalid.

1540 Wrong function for this type of data. Use NewHistoryNode.CreateEx().

1541 The requested layer function is not supported.

1542 Workspace not found.

1543 Landmark not found.

1544 Marked interval can only be inside of a displayed interval.

1545 User canceled operation.

1546 Invalid characters in history node name. '\/:' can't be used for naming.

1547 Progress bar is not initialized.

1548 Menu item not found.

1549 FastArray: First element is out of range.

1550 FastArray: Division by Zero.

1551 FastArray: Source data array is not initialized.

1552 FastArray: Out of memory.

1553 Fast Array: Target data array is not initialized.

1554 FastArray: Only one dimensional floating point single precision arrays are
supported.

1555 FastArray.Parameters lead into infinite loop.

1556 FastArray: Parameter exceeds the limit of 536870912.

1557 FastArray: The parameters would lead into more than 536870912 assign-
ments. This means long lasting operations that can't be interrupted.

Table 5-1. Error codes

Code Message

106 Chapter 5 Error codes

107

Brai

Chapter 6 Analyzer Automation .NET
As of Version 2.0, you can access the Analyzer not only via the OLE Automation facility but
also by using the Microsoft .NET Framework. For this purpose, an interface library has been
set up that you can use directly without the need to access the COM type library.

Currently, no separate Reference Manual is available for .NET Automation. However, the con-
tent of the interfaces for .NET Automation largely correspond to the object classes for COM
Automation. This chapter is intended to provide a guideline for developers who wish to use
.NET Automation that will allow them to use the existing documentation for COM Automation
efficiently for their purposes.

.NET Automation is primarily intended to be accessed from within Analyzer program compo-
nents (transforms, add-ins). We shall assume that this application scenario applies. We
shall not discuss how to create a new project for developing Analyzer program components
under .NET, but will instead assume that you wish to make use of Automation from an exist-
ing project. We shall also assume that you are using Visual Studio and the C# programming
language.

6.1 Overview

.NET Automation follows the programming conventions of C and C# (rather than those of
BASIC). The most important consequence of this is that lists and arrays are numbered start-
ing with 0.

In the same way, -1 is used instead of 0 to indicate an invalid list item. If, for example, a mark-
er is to apply to all channels, the value of its Channel property is -1.

You can include .NET Automation by adding a reference to the library AnalyzerAutomation.dll
to your add-in or transform project. All .NET Automation classes are in the namespace Bra-
inVision.AnalyzerAutomation. This namespace will not be explicitly shown below.

The interfaces used by Automation correspond to the object classes for OLE Automation,
with the names being prefixed by the letter I. This means, for example, that IChannel cor-
responds to the object class Channel. The object class hierarchy is shown in Figure 1-3
on page 20.

The names of the interface members correspond to the names of their counterparts in the ob-
ject classes for OLE Automation. You can use the Object Browser in Visual Studio to view the
exact definition of properties and methods. Alternatively, you can use the Go To Definition
function in Visual Studio to view individual interface definitions.

The IApplication interface plays a key role in the same way as the Application object
class. The AutomationSupport class returns an instance that represents the application.
The sample program below opens the first history file in a workspace:
nVision Analyzer Automation Reference Manual | Manual Version 003 | September 30, 2013

108 Chapter 6 Analyzer Automation .NET
AutomationSupport.Application.HistoryFiles[0].Open()

Unlike the approach taken by OLE Automation, instances of INewHistoryNode are created
by calling one of the overloads of

IApplication.CreateNode()

The ActiveNode variable is used in the integrated BASIC interpreter to create nodes that
are capable of being used as templates. The node that is active in the Analyzer main window
can be determined with the IApplication.ActiveNode property in .NET Automation.

Some of the object classes for OLE Automation define a default object to allow you to access
a child collection directly. In .NET Automation, this behavior is implemented in the form of
appropriate indexers in the parent object. The two lines of code below are equivalent:

IChannel channel = historyNode.Dataset.Channels[0]

IChannel channel = historyNode.Dataset[0]

Some collections (such as Channels) permit indexing via the name or title of the objects
they contain. This option is also available for the corresponding collection in .NET Automa-
tion (such as IChannels).

.NET Automation has no equivalent of the FastArray object class, because the program
code in Analyzer components is executed extremely efficiently and there is therefore no need
for fast array operations.

6.2 Subscribing to Automation events

Events in the IApplication object and the IHistoryFiles object are new features in
.NET Automation. You can define event handlers that are called when certain changes occur
in the program. Thus, for example, you can define a method that is executed if the user wish-
es to close a history file.

The events are implemented in accordance with the normal .NET Framework conventions.
You should, however, note that the usual argument sender for the event handler has not
been used, because the events are generated by objects that are unique throughout the en-
tire program.

Some Automation events allow the event handler to prevent pending changes in the pro-
gram. This allows you, for instance, to prevent the user from closing a history file whose data
is still required for calculations that have not yet been completed. In .NET Automation, this
functionality has been implemented using the argument of the event handler.

The example below shows an event handler that prevents the first history file of the work-
space from being closed:

Using "NewHistoryNode" 109
public void Execute()

{

// Define event handler

AutomationSupport.Application.HistoryFiles.TestFileIsLockedO-

pen

+= new TestLockedOpenEventHandler(TestLockedOpen);

}

void TestLockedOpen(ITestLockedOpenArgument e)

{

if (e.HistoryFile ==

AutomationSupport.Application.HistoryFiles[0])

{

// File remains open.

e.SetLockedOpen();

}

}

6.3 Using "NewHistoryNode"

The normal procedure for creating new data sets (see Section 1.3 as of page 21) also
generally applies to INewHistoryNode. However, three overloads of IApplica-
tion.CreateNode() are now available, so that it is easier to identify the appropriate call
for the current application scenario:

 If you wish to create a new history file, use the overload

INewHistoryNode.CreateNode(string sFileName)

 If you wish to create a new child node containing the same data as its parent node, use
the overload

INewHistoryNode.CreateNode(string sName, IHistoryNode parent,

bool bInheritData)

110 Chapter 6 Analyzer Automation .NET
 If you wish to create a new child node and define the data for this node yourself, you
should also use the overload

INewHistoryNode.CreateNode(string sName, IHistoryNode parent,

bool bInheritData)

 If you want to create a child node that both inherits the data of some of the channels of
its parent node and also modifies or rearranges channels, use the overload

INewHistoryNode.CreateNode(string sName, IHistoryNode parent,

int[] channelMap)

Immediately after you have called CreateNode, you should use the INewHisto-
ryNode.SetDimensions() method to make further basic specifications for the data set.
If you wish to create a data set with multiple frequency levels, you can also use INewHis-
toryNode.SetLayerInformation() to make specifications regarding the frequency
levels.

If you wish to change the markers of the new data set, you can use the INewHisto-
ryNode.Markers collection. You can change the markers contained in the collection di-
rectly by assigning new values to their properties. You can delete markers from the collection
or add new markers. If you wish to move markers to a new position in the data set, you do not
have to take account of the sequence of the markers. The markers in the collection are auto-
matically sorted by their positions when you call INewHistoryNode.Finish().

The ActiveNode variable is used in the integrated BASIC interpreter to create nodes that
are capable of being used as templates. You can determine the node that is active in the An-
alyzer main window in .NET Automation using the IApplication.ActiveNode property.

When you create the node, you can specify the view that is to be used by default when it is
opened. To do this, assign the unique identifier of the view to the NewHistoryNode.Re-
questedView property. You can take the identifier of the view from its XML definition (id
attribute of the <View> tag, the value can, for example, be "EE10458E-8BA8-4276-B469-
E15E785264C2" as in the file StandardView.xml).

In contrast to the behavior with OLE Automation in the integrated BASIC interpreter, execu-
tion of an add-in is not automatically terminated when you call the INewHisto-
ryNode.Finish() or ITransformation.Do() methods.

The example below works in the same way as the example in Section 1.3.2 on page 23:

public void Execute()

{

// Create the object and define basic properties.

IApplication application = AutomationSupport.Application;

INewHistoryNode newNode =

Using "NewHistoryNode" 111
application.CreateNode("Automation.NET",

application.ActiveNode, false);

newNode.SetDimensions(250, 32, 1);

newNode.Datatype = VisionDataType.TimeDomain;

newNode.DataUnit = VisionDataUnit.Microvolt;

// Define channel properties. All other channel properties

// retain the properties inherited from the parent node as

// defaults.

newNode.SetChannelName(0, "Channel B");

newNode.SetChannelName(1, "Channel A");

newNode.SetChannelPosition(3, 1, 0, 90);

// Set an interval marker.

newNode.AddMarker(-1, 200, 20, "Bad Interval", "");

// Specify data: Read 250 points from 3rd channel of the

// parent node and write them to the 1st channel of the new

// node. All other data points retain the

// default value 0.0.

float[] data = application.ActiveNode.Dataset.GetData(0, 250,

new int[] { 2 });

newNode.WriteChannelData(0, 0, data);

// Write a sample text for "Operation Infos"

newNode.Description = "Test for .NET automation.";

// Complete the note.

// Insert the GUID that identifies your add-in here.

112 Chapter 6 Analyzer Automation .NET
newNode.Finish(new Guid(AddInGuid));

}

6.4 Additional extensions

.NET Automation includes a number of minor extensions that provide new functions.

The IApplication interface contains an extended list of functions for displaying messag-
es to the user: AskYesNo, AskOKCancel, Message, Warning and Error. If the add-in is
run inside a history template, and messages are only output to a log, execution is not inter-
rupted by the functions.

The FindNode and FindNextNode functions of the object class HistoryFile have been
replaced by the IHistoryFile.FindNodes() function. This function returns all the
nodes with matching names in an array.

With OLE Automation, access to the properties of markers, channels and data sets is
achieved on the basis of their property names using the methods or properties Proper-
tyName, PropertyValue and PropertyCount. With .NET Automation, this is achieved
by the methods EnumerateProperties and GetUserProperty.

It is now possible to display a data set using a precisely specified EEG view. To do this, pass
the unique identifier of the view to the IHistoryNode.ShowView function. You can get
the identifier of the view from its XML definition (id attribute of the <View> tag). The follow-
ing call opens a history node using the grid view:

historyNode.ShowView(new Guid(

"D654817E-4429-4d9b-AF23-6F09F5A471B5"))



113

BrainV

Glossary
A

Add-in: Add-ins are Analyzer program components that of-
fer additional functions. Add-ins can also be created by us-
ers themselves and are freely programmable. While, for
example, they can act as transforms or export components,
they internally use a simplified program mechanism.

C

Child node: In the history tree, this refers to the EEG data
sets that are subordinate to the current node and represent
the following processing steps.

D

Dongle: Pluggable copy protection device.

E

EEG view: Method of representing the EEG, such as the grid
view, the head view, and the mapping view. A view deter-
mines how the channels are arranged in the window, for ex-
ample.

Export component: Analyzer program element which writes
the content of the current data set to a file so that this can
be used outside of the Analyzer.

H

History Explorer: An element in the Analyzer user interface
which allows users to edit raw data nodes and created his-
tory nodes.

History file: The file on your computer in which the process-
ing steps applied to an EEG file are stored. Also refers to the
EEG file displayed in the History Explorer.

History node: Representation of a processing step applied
to an EEG file in the Analyzer user interface.

History template: File in which processing steps from the
history tree are stored. The processing steps can be execut-
ed again automatically elsewhere.

History tree: The processing steps applied to the EEG and
displayed in the form of a tree.

L

License: Allows the user to work with one of the optional
program components of the Analyzer.

N

Network dongle: Pluggable copy protection device for oper-
ating the Analyzer on multiple workstations in a network
environment.

O

Operation Infos: The descriptive text that summarizes the
settings used for the execution of a processing step. The
Operation Infos are saved automatically and can be viewed
again later.

P

Parent node: In the history tree, the uniquely defined EEG
data set directly above the current node.

Primary history file: Primary history files are history files
that are based on the EEG raw data, in contrast to second-
ary history files.

Primary transform: Primary transforms are processing
steps which are applied to an existing data set in a history
file. This leads to the creation of a new data set below the
original data set.

Program component: Analyzer program element that is lo-
cated outside of the actual program file and is dynamically
loaded. By adding new components it is possible to expand
the Analyzer's functionality.

R

Raw data node: The top-level EEG data set in a history file.
This contains the unmodified EEG data read in from the raw
file.

Raw file: The EEG file obtained directly during recording
without any modifications.
ision Analyzer Automation Reference Manual | Manual Version 003 | September 30, 2013

114 Glossary
S

Secondary history file: Secondary history files are history
files that are based on data compiled as the results of pro-
cessing steps from multiple history files.

T

Transform: Transforms are Analyzer program components
that process input data and then output data either in the
form of a new EEG data set or directly for display.

Transient transform: Transient transforms are processing
steps which are only used for visualization purposes. The
data output from a transient transform does not generate a
new data set but is instead displayed directly.

W

Workfile: A file containing information on workspaces
(*.wksp2), montages (*.mont2) and other user-defined set-
tings.

Workspace: Configuration file which contains storage loca-
tions for raw files, history files and exported data. Exten-
sion: .wksp2.

	Contents
	List of figures
	List of tables
	About this manual
	Structure and content of the new Automation Reference Manual
	Who is the manual intended for?
	Conventions used in the manual
	Revision history
	Reporting errors and support

	Preface
	Chapter 1 Underlying concepts
	1.1 First steps and simple examples
	1.2 Overview of the object hierarchy
	1.3 Creating new data sets with "NewHistoryNode"
	1.3.1 Specifying basic properties of data sets
	1.3.2 Defining the contents of data sets
	1.3.3 Creating data sets suitable for history templates
	1.3.4 Efficient handling of data from the parent node

	1.4 Processing arrays with "FastArray"
	1.5 Dynamic parameterization
	1.6 Alternatives to the integrated BASIC interpreter

	Chapter 2 Object classes
	2.1 Application
	2.1.1 Description
	2.1.2 Methods
	2.1.3 Properties

	2.2 Channel
	2.2.1 Description
	2.2.2 Example
	2.2.3 Methods
	2.2.4 Properties

	2.3 ChannelPosition
	2.3.1 Description
	2.3.2 Properties

	2.4 Channels
	2.4.1 Description
	2.4.2 Properties

	2.5 CurrentWorkspace
	2.5.1 Description
	2.5.2 Methods
	2.5.3 Properties

	2.6 Dataset
	2.6.1 Description
	2.6.2 Methods
	2.6.3 Properties

	2.7 DeletedHistoryNode
	2.7.1 Description
	2.7.2 Methods
	2.7.3 Properties

	2.8 DeletedHistoryNodes
	2.8.1 Description
	2.8.2 Properties

	2.9 Dongle
	2.9.1 Description
	2.9.2 Properties

	2.10 FastArray
	2.10.1 Description
	2.10.2 Example
	2.10.3 Methods

	2.11 HistoryExplorer
	2.11.1 Description
	2.11.2 Properties

	2.12 HistoryFile
	2.12.1 Description
	2.12.2 Methods
	2.12.3 Properties

	2.13 HistoryFiles
	2.13.1 Description
	2.13.2 Methods
	2.13.3 Properties

	2.14 HistoryNode
	2.14.1 Description
	2.14.2 Example
	2.14.3 Methods
	2.14.4 Properties

	2.15 HistoryNodes
	2.15.1 Description
	2.15.2 Properties

	2.16 HistoryTemplateNode
	2.16.1 Description
	2.16.2 Properties

	2.17 Landmark
	2.17.1 Description
	2.17.2 Properties

	2.18 Landmarks
	2.18.1 Description
	2.18.2 Properties

	2.19 License
	2.19.1 Description
	2.19.2 Properties

	2.20 Licenses
	2.20.1 Description
	2.20.2 Properties

	2.21 Marker
	2.21.1 Description
	2.21.2 Methods
	2.21.3 Properties

	2.22 Markers
	2.22.1 Description
	2.22.2 Properties

	2.23 NewHistoryNode
	2.23.1 Description
	2.23.2 Methods
	2.23.3 Properties

	2.24 ProgressBar
	2.24.1 Description
	2.24.2 Example
	2.24.3 Methods
	2.24.4 Properties

	2.25 Segment
	2.25.1 Description
	2.25.2 Properties

	2.26 Segments
	2.26.1 Description
	2.26.2 Properties

	2.27 Transformation
	2.27.1 Description
	2.27.2 Methods

	2.28 Window
	2.28.1 Description
	2.28.2 Methods
	2.28.3 Properties

	2.29 Windows
	2.29.1 Description
	2.29.2 Properties

	2.30 Workspace
	2.30.1 Description
	2.30.2 Properties

	2.31 Workspaces
	2.31.1 Description
	2.31.2 Methods
	2.31.3 Properties

	Chapter 3 Callable transforms
	3.1 Band Rejection
	3.2 Complex Demodulation
	3.3 Formula Evaluator
	3.4 IIR Filters

	Chapter 4 Enumerator types
	4.1 VisionDataType
	4.2 VisionDataUnit
	4.3 VisionSegType
	4.4 VisionLayerIncFunction

	Chapter 5 Error codes
	Chapter 6 Analyzer Automation .NET
	6.1 Overview
	6.2 Subscribing to Automation events
	6.3 Using "NewHistoryNode"
	6.4 Additional extensions
	Add-in: Add-ins are Analyzer program components that offer additional functions. Add-ins can also be created by users themselves and are freely programmable. While, for example, they can act as transforms or export components, they internally use a s...
	Child node: In the history tree, this refers to the EEG data sets that are subordinate to the current node and represent the following processing steps.
	Dongle: Pluggable copy protection device.
	EEG view: Method of representing the EEG, such as the grid view, the head view, and the mapping view. A view determines how the channels are arranged in the window, for example.
	Export component: Analyzer program element which writes the content of the current data set to a file so that this can be used outside of the Analyzer.
	History Explorer: An element in the Analyzer user interface which allows users to edit raw data nodes and created history nodes.
	History file: The file on your computer in which the processing steps applied to an EEG file are stored. Also refers to the EEG file displayed in the History Explorer.
	History node: Representation of a processing step applied to an EEG file in the Analyzer user interface.
	History template: File in which processing steps from the history tree are stored. The processing steps can be executed again automatically elsewhere.
	History tree: The processing steps applied to the EEG and displayed in the form of a tree.
	License: Allows the user to work with one of the optional program components of the Analyzer.
	Network dongle: Pluggable copy protection device for operating the Analyzer on multiple workstations in a network environment.
	Operation Infos: The descriptive text that summarizes the settings used for the execution of a processing step. The Operation Infos are saved automatically and can be viewed again later.
	Parent node: In the history tree, the uniquely defined EEG data set directly above the current node.
	Primary history file: Primary history files are history files that are based on the EEG raw data, in contrast to secondary history files.
	Primary transform: Primary transforms are processing steps which are applied to an existing data set in a history file. This leads to the creation of a new data set below the original data set.
	Program component: Analyzer program element that is located outside of the actual program file and is dynamically loaded. By adding new components it is possible to expand the Analyzer's functionality.
	Raw data node: The top-level EEG data set in a history file. This contains the unmodified EEG data read in from the raw file.
	Raw file: The EEG file obtained directly during recording without any modifications.
	Secondary history file: Secondary history files are history files that are based on data compiled as the results of processing steps from multiple history files.
	Transform: Transforms are Analyzer program components that process input data and then output data either in the form of a new EEG data set or directly for display.
	Transient transform: Transient transforms are processing steps which are only used for visualization purposes. The data output from a transient transform does not generate a new data set but is instead displayed directly.
	Workfile: A file containing information on workspaces (*.wksp2), montages (*.mont2) and other user-defined settings.
	Workspace: Configuration file which contains storage locations for raw files, history files and exported data. Extension: .wksp2.

	Glossary

